Numerical analysis of the convection and diffusion of solutes to roots
JB Passioura and MH Frere
Australian Journal of Soil Research
5(2) 149 - 159
Published: 1967
Abstract
A numerical method is given for solving a partial differential equation describing the radial movement of solutes through a porous medium to a root. Computer programmes based on the method were prepared and used to obtain solutions of the equation for an idealized root-soil system in which a solute is transported to the root by convection but is not taken up by the root. Various patterns of water uptake were considered, the most complex being a diurnally varying uptake from soil in which the water content is decreasing. The solutions suggest that the maximum build-up of solute at the surface of a root is trivial if the root is growing in a medium such as agar, in which the diffusion coefficient of the solute is high, but may be considerable, with a concentration up to 10 times higher than the average concentration in the soil solution, when the root is growing in a fairly dry soil. The application of the method to systems other than the one considered in detail is discussed.https://doi.org/10.1071/SR9670149
© CSIRO 1967