Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Soybean and corn yield as affected by crop rotation and surface liming under a no-tillage system

Sandra Mara Vieira Fontoura A , Albert Matheus Melinski B , Antônio Carlos Vargas Motta https://orcid.org/0000-0001-9117-1881 B , Lenir Fátima Gotz https://orcid.org/0000-0001-6145-4717 B D * , Eloá Moura Araujo https://orcid.org/0000-0002-7096-6666 B , Stephen A. Prior C and Volnei Pauletti https://orcid.org/0000-0002-9231-7851 B
+ Author Affiliations
- Author Affiliations

A Agrária Cooperative, Agrária Agricultural Research Foundation, Guarapuava, State of Paraná, Brazil.

B Department of Soils and Agricultural Engineering, Federal University of Paraná, Curitiba, State of Paraná, Brazil.

C United State Department of Agriculture (USDA) - Agricultural Research Service (ARS), Auburn, AL, USA.

D Present address: Department of Soil Science, University of Sao Paulo - ‘Luiz de Queiroz’ College of Agriculture, Piracicaba, São Paulo, Brazil.


Handling Editor: Stephen Cattle

Soil Research 62, SR22246 https://doi.org/10.1071/SR22246
Submitted: 11 November 2022  Accepted: 21 December 2023  Published: 19 January 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

In no-tillage systems, surficial lime application may induce an alkalinisation front that can correct soil acidity with depth and impact crop yields.

Aims

Our objective was to determine maintenance liming rates that provide the highest yield of soybean and corn in different crop rotations and to assess the speed and persistence of surficial lime application with soil depth in a no-tillage system.

Methods

The experiment was conducted in Southern Brazil on a clayey Oxisol under no-tillage with four lime treatments (0, 3.5, 5.7, and 11.1 Mg ha−1 of dolomitic lime) and three crop rotations (for grain or biomass production). Grain yield was evaluated, and soil chemical variables were annually determined on samples collected from four soil depths over 10 years.

Key results

Soybean and corn surpassed state production levels, and grain production in winter did not compromise summer grain yield. In 10 years, the alkalinisation front reached the 40–60 cm soil layer. Application of lime at 5.7 Mg ha−1 allows for maintenance of crop yield and stable acidity levels.

Conclusions

In this no-tillage system, the cultivation of different winter plant species did not interfere with corn and soybean yield, lime effects in deeper soil layers, or liming need. Lime applied to the soil surface was efficient in controlling acidity in upper and deeper soil layers (up to 60 cm) in soil with high buffering capacity.

Implications

Due to slow movement, soil samples should be collected every 4 to 5 years to monitor soil acidity.

Keywords: alkalinisation front, base mobility, grain production, liming rates, Oxisol, soil acidity, soil alkalinisation.

References

Allen ER, Hossner LR (1991) Factors affecting the accumulation of surface-applied agricultural limestone in permanent pastures. Soil Science 151, 240-248.
| Google Scholar |

Alleoni LRF, Cambri MA, Caires EF, Garbuio FJ (2010) Acidity and aluminum speciation as affected by surface liming in tropical no-till soils. Soil Science Society of America Journal 74, 1010-1017.
| Crossref | Google Scholar |

Alvares CA, Stape JL, Sentelhas PC, Moraes Gonçalves JL, Gerd S (2014) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711-728.
| Crossref | Google Scholar |

Amaral AS, Anghinoni I (2001) Alteração de parâmetros químicos do solo pela reaplicação superficial de calcário no sistema plantio direto [Alteration of soil chemical parameters by surface re-application of lime in the no-tillage system]. Pesquisa Agropecária Brasileira 36, 695-702.
| Crossref | Google Scholar |

Bala A, Murphy PJ, Osunde AO, Giller KE (2003) Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Applied Soil Ecology 22, 211-223.
| Crossref | Google Scholar |

Barbieri PA, Echeverría HE, Sainz Rozas HRS, Martinez JP (2015) Soybean and wheat response to lime in no-till Argentinean Mollisols. Soil and Tillage Research 152, 29-38.
| Crossref | Google Scholar |

Barcellos M, Motta ACV, Pauletti V, Silva JCPM, Barbosa JZ (2015) Atributos químicos de Latossolo sob plantio direto adubado com esterco de bovinos e fertilizantes minerais [Chemical attributes of Oxisol in no-tillage system fertilized with manure from cattle and mineral fertilizers]. Comunicata Scientiae 6, 263-273.
| Crossref | Google Scholar |

Brown BA, Munsell RI, Holt RF, King AV (1956) Soil reactions at various depths as influenced by time since application and amounts of limestone. Soil Science Society of America Journal 20, 518-522.
| Crossref | Google Scholar |

Caires EF, Alleoni LRF, Cambri MA, Barth G (2005) Surface application of lime for crop grain production under a no-till system. Agronomy Journal 97, 791-798.
| Crossref | Google Scholar |

Caires EF, Garbuio FJ, Alleoni LRF, Cambri MA (2006) Calagem superficial e cobertura de aveia preta antecedendo os cultivos de milho e soja em sistema plantio direto [Surface liming and black oat cover preceding corn and soybean crops in no-tillage system]. Revista Brasileira de Ciência do Solo 30, 87-98.
| Crossref | Google Scholar |

Caires EF, Haliski A, Bini AR, Scharr DA (2015) Surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil. European Journal of Agronomy 66, 41-53.
| Crossref | Google Scholar |

Calegari A, Tiecher T, Hargrove WL, Ralish R, Tessier D, Tourdonnet S, Guimarães MF, Santos DR (2013) Long-term effect of different soil management systems and winter crops on soil acidity and vertical distribution of nutrients in a Brazilian Oxisol. Soil and Tillage Research 133, 32-39.
| Crossref | Google Scholar |

Castro GSA, Crusciol CAC (2015) Effects of surface application of dolomitic limestone and calcium-magnesium silicate on soybean and maize in rotation with green manure in a tropical region. Bragantia 74, 311-321.
| Crossref | Google Scholar |

Embrapa (1984) ‘Levantamento de reconhecimento dos solos do Paraná [Survey of recognition of the soils of Paraná].’ (Embrapa: Londrina)

Embrapa (2018) ‘Sistema brasileiro de classificação de solos [Brazilian system of soil classification].’ (Embrapa Solo: Brasília)

Ferreira TR, Pires LF, Wildenschild D, Heck RJ, Antonino AC (2018) X-ray microtomography analysis of lime application effects on soil porous system. Geoderma 324, 119-130.
| Crossref | Google Scholar |

Fontoura SMV (2005) ‘Adubação nitrogenada na cultura do milho em Entre Rios, Guarapuava, Paraná [Nitrogen fertilization in corn in Entre Rios, Guarapuava, Paraná].’ (Fundação Agrária de Pesquisa Agropecuária: Guarapuava)

Fontoura SMV (2011) ‘Camada diagnóstica e critérios de manejo da fertilidade de solos em plantio direto na região Centro-Sul do Paraná [Diagnostic layer and soil fertility management criteria under no-tillage in the Center-South region of Paraná].’ (Fundação Agrária de Pesquisa Agropecuária: Guarapuava)

Fontoura SMV, Pias OHC, Tiecher T, Cherubin MR, Moraes RP, Bayer C (2019) Effect of gypsum rates and lime with different reactivity on soil acidity and crop grain yields in a subtropical Oxisol under no-tillage. Soil and Tillage Research 193, 27-41.
| Crossref | Google Scholar |

Franchini JC, Meda AR, Cassiolato ME, Miyazawa M, Pavan MA (2001) Potencial de extratos de resíduos vegetais na mobilização do calcário no solo por método biológico [Potential of plant residue extracts in soil limestone mobilization by biological method]. Scientia Agricola 58, 357-360.
| Crossref | Google Scholar |

Gascho GJ, Parker MB (2001) Long-term liming effects on coastal plain soils and crops. Agronomy Journal 93, 1305-1315.
| Crossref | Google Scholar |

Gish TJ, Jury WA (1983) Effect of plant roots and root channels on solute transport. American Society of Agricultural and Biological Engineers 26, 440-444.
| Crossref | Google Scholar |

Godsey CB, Pierzynski GM, Mengel DB, Lamond RE (2007) Management of soil acidity in no-till production systems through surface application of lime. Agronomy Journal 99, 764-772.
| Crossref | Google Scholar |

Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal of Microbiology 38, 475-484.
| Crossref | Google Scholar |

Hao T, Zhu Q, Zeng M, Shen J, Shi X, Liu X, Zhang F, Vries W (2019) Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system. Plant and Soil 434, 167-184.
| Crossref | Google Scholar |

Jones JD, Mallarino AP (2018) Influence of source and particle size on agricultural limestone efficiency at increasing soil pH. Soil Science Society of America Journal 82, 271-282.
| Crossref | Google Scholar |

Kaminski J, Santos DR, Gatiboni LC, Brunetto G, Silva LS (2005) Eficiência da calagem superficial e incorporada precedendo o sistema plantio direto em um argissolo sob pastagem natural. Revista Brasileira de Ciência do Solo 29, 573-580.
| Crossref | Google Scholar |

Li GD, Conyers MK, Helyar KR, Lisle CJ, Poile GJ, Cullis BR (2019) Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia. Geoderma 338, 236-246.
| Crossref | Google Scholar |

Michelon CJ, Junges E, Casali CA, Pellegrini JBR, Rosa Neto L, Oliveira ZB, Oliveir BB (2019) Atributos do solo e produtividade de milho cultivado em sucessão a plantas de cobertura de inverno [Soil attributes and yield of corn grown in succession to winter cover crops]. Revista de Ciências Agroveterinárias 18, 230-239.
| Crossref | Google Scholar |

Miller L (2015) How fast is lime moving and is it treating acidity at depth? Southern Farming Systems 1, 133-135.
| Google Scholar |

Miranda LN, Miranda JCC, Rein TA, Gomes AC (2005) Utilização de calcário em plantio direto e convencional de soja e milho em Latossolo Vermelho [Limestone use in no-tillage and conventional soy and corn planting in Latossolo Vermelho]. Pesquisa Agropecuária Brasileira 40, 563-572.
| Crossref | Google Scholar |

Moreira SG, Prochnow LI, Pauletti V, Silva BM, Kiehl JC, Silva CGM (2017) Effect of liming on micronutrient availability to soybean grown in soil under different lengths of time under no tillage. Acta Scientiarum. Agronomy 39, 89-97.
| Crossref | Google Scholar |

Motta ACV, Melo VDEF (2009) Química dos solos ácidos [Chemistry of acidic soils]. In ‘Mineralogia do Solo [Soil mineralogy]’. (Eds LRF Alleoni, VF Melo) pp. 313–380. (SBCS: Viçosa)

Nepar (2019) ‘Manual de adubação e calagem para o estado do Paraná [Manual of fertilization and liming for the state of Paraná].’ (SBCS/NEPAR: Curitiba)

Oliveira EL, Pavan MA (1996) Control of soil acidity in no-tillage system for soybean production. Soil and Tillage Research 38, 47-57.
| Crossref | Google Scholar |

Pagani A, Mallarino AP (2012) Soil pH and crop grain yield as affected by the source and rate of lime. Soil Science Society of America Journal 76, 1877-1886.
| Crossref | Google Scholar |

Pauletti V, Pierri L, Ranzan T, Barth G, Motta ACV (2014) Efeitos em longo prazo da aplicação de gesso e calcário no sistema de plantio direto [Long-term effects of the application of gypsum and lime in a no-till system]. Revista Brasileira de Ciência do Solo 38, 495-505.
| Crossref | Google Scholar |

Pavan MA, Bloch MF, Zempulski HC, Miyazawa M, Zocoler DC (1992) ‘Manual de análise química do solo e controle de qualidade [Manual of soil chemical analysis and quality control].’ (IAPAR: Londrina)

Pierri LD, Pauletti V, Barth G, Motta ACV, Silva DAD, Roza LAD, Saudade CAS (2019) Soil chemical attributes and energetic potential of agricultural residual biomasses provided by 23-year soil management. Bragantia 78, 454-469.
| Crossref | Google Scholar |

Quaggio JA, Van Raij B (1979) Comparação de métodos rápidos para a determinação da matéria orgânica em solos [Comparison of rapid methods for the determination of organic matter in soils]. Revista Brasileira de Ciência do Solo 3, 184-187.
| Google Scholar |

Rheinheimer DS, Santos EJS, Kaminski J, Bortoluzzi EC, Gatiboni LC (2000) Alterações de atributos do solo pela calagem superficial e incorporada a partir de pastagem natural [Changes in acid soil properties by superficial and incorporated liming on natural pasture]. Revista Brasileira de Ciência do Solo 24, 797-805.
| Crossref | Google Scholar |

Rodrighero MB, Barth G, Caires EF (2015) Aplicação superficial de calcário com diferentes teores de magnésio e granulometrias em sistema plantio direto [Surface application of time with different magnesium contents and particle sizes under a no-tillage system]. Revista Brasileira de Ciência do Solo 39, 1723-1736.
| Crossref | Google Scholar |

Santos DR, Tiecher T, Gonzatto R, Santanna MA, Brunetto G, Silva LS (2018) Long-term effect of surface and incorporated liming in the conversion of natural grassland to no-till system for grain production in a highly acidic sandy-loam Ultisol from South Brazilian Campos. Soil and Tillage Research 180, 222-231.
| Crossref | Google Scholar |

Schoninger EL, Lange A, Silva AF, Lemke AF, Monteiro S, Silva JAN (2010) Atributos químicos do solo e produtividade da cultura de soja em área de semeadura direta após calagem superficial [Soil chemical atributes and soybean yield in no-tillage system after surface liming]. Semina:Ciencias Agrarias 31, 1253-1262.
| Google Scholar |

SEAB/DERAL (2020) Agricultura - comparativo Paraná/Brasil. Available at http://www.agricultura.pr.gov.br/deral/ProducaoAnual [accessed 19 October 2020]

Silva VDA, Motta ACV, Melo VF, Lima VC (2008) Variáveis de acidez em função da mineralogia da fração argila do solo [Soil acidity parameters as related to clay mineralogy]. Revista Brasileira de Ciência do Solo 32, 551-559.
| Crossref | Google Scholar |

Soil Survey Staff (1999) Soil taxonomy. a basic system of soil classification for making and interpreting soil survey. (NRCS: Washington)

Tiritan CS, Büll L, Crusciol CAC, Carmeis Filho ACA, Fernandes DM, Nascente AS (2016) Tillage system and lime application in a tropical region: soil chemical fertility and corn yield in succession to degraded pastures. Soil and Tillage Research 155, 437-447.
| Crossref | Google Scholar |

Tissi JA, Caires EF, Pauletti V (2004) Efeitos da calagem em semedura direta de milho [Effect of lime application on no-tillage corn]. Bragantia 63, 405-413.
| Crossref | Google Scholar |

Van Raij B, Quaggio JA (1983) ‘Métodos de análise de solo para fins de Fertilidade [Soil analysis methods for fertility purposes].’ (Instituto Agronômico: Campinas)

Vargas JPR, Santos DR, Bastos MC, Chaefer G, Parisi PB (2019) Application forms and types of soil acidity corrective: changes in depth chemical attributes in long term period experiment. Soil and Tillage Research 185, 47-60.
| Crossref | Google Scholar |

Vieira RCB, Bayer C, Fontoura SMV, Anghinoni I, Ernani PR, Moraes RP (2012) Critérios de calagem e teores críticos de fósforo e potássio em latossolos sob plantio direto no Centro-Sul do Paraná [Liming criteria and critical levels of phosphorus and potassium in oxisoils under no-till system of the south-central region of Paraná state, Brazil]. Revista Brasileira de Ciência do Solo 37, 188-198.
| Crossref | Google Scholar |

Vieira RCB, Fontoura SMV, Bayer C, Ernani PR, Anghinoni I, Moraes RP (2016) Sampling layer for soil fertility evaluation in long-term no-tillage systems. Revista Brasileira de Ciência do Solo 40, e0150143.
| Crossref | Google Scholar |

Yagi R (2018) Occasional soil tillage, liming, and nitrogen fertilization on long-term no-tillage system. Pesquisa Agropecuária Brasileira 53, 833-839.
| Crossref | Google Scholar |

Ziglio CM, Miyazawa M, Pavan MA (1999) Formas orgânicas e inorgânicas de mobilização do cálcio no solo [Organic and inorganic forms of mobilization of calcium in the soil]. Brazilian Archives of Biology and Technology 42, 1-6.
| Crossref | Google Scholar |