Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Soil nitrous oxide emissions in a maize (Zea mays L.) crop in response to nitrogen fertilisation

Carolina Alvarez A , Carina R. Álvarez B , Bruno J. R. Alves C and Alejandro O. Costantini https://orcid.org/0000-0001-6355-5271 B D *
+ Author Affiliations
- Author Affiliations

A INTA, EEA Manfredi, Ruta Nac. No. 9 km 636, CP 5988 Manfredi, Córdoba, Argentina.

B Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, CP 1417 Buenos Aires, Argentina.

C EMBRAPA – Agrobiologia, Rodovia BR-465, Km, 7, Seropédica, RJ 23891-000, Brazil.

D INTA, Instituto de Suelos, De los Reseros y Nicolás Repetto S/N, Castelar – Hurlingham, CP 1686 Provincia de Buenos Aires, Argentina.


Handling Editor: Iris Vogeler

Soil Research 60(8) 782-791 https://doi.org/10.1071/SR21094
Submitted: 8 April 2021  Accepted: 12 April 2022   Published: 13 June 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context: An appropriate use of the fertiliser technology may lead to a more efficient N absorption and to the reduction of economic and environmental costs.

Aims: This study sought to quantify N2O emissions generated from soil and the residual nitrate (NO3) up to 2 m depth in field conditions in a maize crop under supplementary irrigation and fertilised with two nitrogen (N) sources (UAN and urea) at increasing N rates (0, 80, 160 and 250 kg N ha−1) in the Semi-arid Argentine Pampas.

Methods: Throughout the crop cycle, emissions were monitored daily with static chambers during the first week after fertilisation; then sampling frequency was gradually reduced until the end of the experiment.

Key results: There were no yield responses to the use of different sources and N rates. Crop N uptake saturated at 80 kg N ha−1, reaching 300–310 kg N ha−1. Residual NO3 increased significantly with the highest rates of N fertiliser. Total N2O emissions differed significantly only among fertiliser rates. The N2O emissions were lower at 80 than at 160 and 250 kg N ha−1.

Conclusions: The N2O emissions measured were lower than those calculated by the IPCC, even when only direct emissions were considered. No grain yield increase was observed due to N fertilisation, with a non-limiting supply of N-NO3 at the beginning of the crop cycle and of N from mineralisation.

Implications: This excess of N can generate negative environmental effects due to higher emissions of N2O and residual N-NO3 that can be leached.

Keywords: Argentinean Pampas, environmental effects, greenhouse gases, irrigation, maize yield, nitrate leaching, UAN, urea.


References

Álvarez R, Steinbach HS (2016) Dosificación de la fertilización en maíz. Capítulo 15. In ‘Fertilidad de suelos y fertilización en la región pampeana’. (Ed. R Alvarez) pp. 307–331. (EFA: Buenos Aires)

Alvarez C, Costantini A, Alvarez CR, Alves BJR, Jantalia CP, Martellotto EE, Urquiaga S (2012) Soil nitrous oxide emissions under different management practices in the semiarid region of the Argentinian Pampas. Nutrient Cycling in Agroecosystems 94, 209–220.
Soil nitrous oxide emissions under different management practices in the semiarid region of the Argentinian Pampas.Crossref | GoogleScholarGoogle Scholar |

Alvarez C, Alvarez CR, Costantini A, Basanta M (2014) Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research 142, 25–31.
Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina).Crossref | GoogleScholarGoogle Scholar |

Álvarez CR, Rimski Korsakov H, Torres Duggan M (2021) Effects of supplementary irrigation on soils and corps in Humid and Subhumid areas in the Pampas Region of Argentina. In ‘Saline and alkaline soils in Latin America’. (Eds E Taleisnik, RS Lavado) pp. 285–294 (Springer: Switzerland)

Aparicio V, Costa JL, Zamora M (2008) Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina. Agricultural Water Management 95, 1361–1372.
Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina.Crossref | GoogleScholarGoogle Scholar |

Bell MJ, Rees RM, Cloy JM, Topp CFE, Bagnall A, Chadwick DR (2015) Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment 508, 343–353.
Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: effects of soil and climatic conditions and a nitrification inhibitor.Crossref | GoogleScholarGoogle Scholar | 25497356PubMed |

Bosnero H, Lovera EF, Tassile JL (2014) ‘Serie Carta de Suelos de la República Argentina.’ 2nd edn. (Hoja 3163-32: Oncativo)

Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorous in soils. Soil Science 59, 39–46.
Determination of total, organic and available forms of phosphorous in soils.Crossref | GoogleScholarGoogle Scholar |

Bremner JM (1965) Inorganic forms of nitrogen. In ‘Methods of soil analysis, Part 2.’ Agronomy No 9. (Eds CA Black, DD Evans, LE Ensminger, RC Dinauer) pp. 1179–1237. (American Society of Agronomy: Madison, WI, USA)

Buschiazzo DE, Panigatti JL, Unger PW (1998) Tillage effects on soil properties and crop production in the subhumid and semiarid Argentinean Pampas. Soil and Tillage Research 49, 105–116.
Tillage effects on soil properties and crop production in the subhumid and semiarid Argentinean Pampas.Crossref | GoogleScholarGoogle Scholar |

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20130122
Nitrous oxide emissions from soils: how well do we understand the processes and their controls?Crossref | GoogleScholarGoogle Scholar |

Conen F, Smith KA (1998) A re-examination of closed flux chamber methods for the measurement of trace gas emissions from soils to the atmosphere. European Journal of Soil Science 49, 701–707.
A re-examination of closed flux chamber methods for the measurement of trace gas emissions from soils to the atmosphere.Crossref | GoogleScholarGoogle Scholar |

Cosentino VRN, Fernandez PL, Figueiro Aureggi SA, Taboada MA (2012) N2O emissions from a cultivated mollisol: optimal time of day for sampling and the role of soil temperature. Revista Brasileira de Ciência do Solo 36, 1814–1819.
N2O emissions from a cultivated mollisol: optimal time of day for sampling and the role of soil temperature.Crossref | GoogleScholarGoogle Scholar |

Cosentino VRN, Figueiro Aureggui AS, Taboada MA (2013) Hierarchy of factors driving N2O emissions in non-tilled soils under different crops. European Journal of Soil Science 64, 550–557.
Hierarchy of factors driving N2O emissions in non-tilled soils under different crops.Crossref | GoogleScholarGoogle Scholar |

Davidson EA (1992) Sources of nitric-oxide and nitrous-oxide following wetting of dry soil. Soil Science Society of America Journal 56, 95–102.
Sources of nitric-oxide and nitrous-oxide following wetting of dry soil.Crossref | GoogleScholarGoogle Scholar |

Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience 2, 659–662.
The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860.Crossref | GoogleScholarGoogle Scholar |

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat versión 2018. (Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Argentina) Available at http://www.infostat.com.ar

Díaz Valdez S, García F, Caviglia O (2014) Maíz tardío en Entre Ríos, Argentina: Calibración de umbrales críticos en nitrógeno. Informaciones Agronómicas de Hispanoamérica 13, 18–20.

FAO (2019) Organización de las Naciones Unidas para la Alimentación y la Agricultura. Datos de Producción. Available at http://www.fao.org/faostat/es/#data/RFB. [Accessed 20 August 2021]

FAO (2020) ‘A protocol for measurement, monitoring, reporting and verification of soil organic carbon in agricultural landscapes – GSOC-MRV Protocol.’ (FAO: Rome)
| Crossref |

FAO (2021) Organización de las Naciones Unidas para la Alimentación y la Agricultura. Datos de Producción. Available at http://www.fao.org/faostat/es/#data/QCL. [Accessed 20 August 2021]

Forster P, Storelvmo T, Armour K, Collins W, Dufresne JL, Frame D, Lunt DJ, Mauritsen T, Palmer MD, Watanabe M, Wild M, Zhang H (2021) The earth’s energy budget, climate feedbacks, and climate sensitivity. In ‘Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change’. (Eds V Masson-Delmotte, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu, B Zhou) (Cambridge University Press)

Giles M, Morley N, Baggs EM, Daniell TJ (2012) Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Frontiers in Microbiology 3, 407
Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production.Crossref | GoogleScholarGoogle Scholar | 23264770PubMed |

Grave RA, da Silveira Nicoloso R, Cassolc PC, da Silva ML, Mezzari MP, Aita C, Wuaden CR (2018) Determining the effects of tillage and nitrogen sources on soil N2O emission. Soil and Tillage Research 175, 1–12.
Determining the effects of tillage and nitrogen sources on soil N2O emission.Crossref | GoogleScholarGoogle Scholar |

Gregoret MC, Dardanelli J, Bongiovanni R, Diaz Zorita M (2006) Modelo de respuesta sitio-específica del maíz al nitrógeno y agua edáfica en un Haplustol. Ciencia del Suelo 24, 147–159.

Halvorson AD, Del Grosso SJ, Jantalia CP (2011) Nitrogen source effects on soil nitrous oxide emissions from strip-till corn. Journal of Environmental Quality 40, 1775–1786.
Nitrogen source effects on soil nitrous oxide emissions from strip-till corn.Crossref | GoogleScholarGoogle Scholar | 22031560PubMed |

Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP (2011) Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology 17, 1140–1152.
Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest.Crossref | GoogleScholarGoogle Scholar |

IPCC (2019) Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In ‘Refinement to the 2006 IPCC Guidelines for national greenhouse gas inventories’. pp. 11.1–11.48. (Eds E Calvo Buendia, K Tanabe, A Kranjc, B Jamsranjav, M Fukuda, S Ngarize, A Osako, Y Pyrozhenko, P Shermanau, S Federici) (Intergovernmental Panel on Climate Change)

Johnston AM, Bruulsema TW (2014) 4R Nutrient Stewardship for improved nutrient use efficiency. Procedia Engineering 83, 365–370.
4R Nutrient Stewardship for improved nutrient use efficiency.Crossref | GoogleScholarGoogle Scholar |

Klein HS, Vidal Luna F (2021) The growth of the soybean frontier in South America: the case of Brazil and Argentina. Revista de Historia Económica 39, 427–468.
The growth of the soybean frontier in South America: the case of Brazil and Argentina.Crossref | GoogleScholarGoogle Scholar |

Liang LL, Campbell DI, Wall AM, Schipper LA (2018) Nitrous oxide fluxes determined by continuous eddy covariance measurements from intensively grazed pastures: Temporal patterns and environmental controls. Agriculture, Ecosystems & Environment 268, 171–180.
Nitrous oxide fluxes determined by continuous eddy covariance measurements from intensively grazed pastures: Temporal patterns and environmental controls.Crossref | GoogleScholarGoogle Scholar |

Martins MR, Jantalia CP, Polidoro JC, Batista JN, Alves BJR, Boddey RM, Urquiaga S (2015) Nitrous oxide and ammonia emissions from N fertilization of maize crop under no-till in a Cerrado soil. Soil and Tillage Research 151, 75–81.
Nitrous oxide and ammonia emissions from N fertilization of maize crop under no-till in a Cerrado soil.Crossref | GoogleScholarGoogle Scholar |

MAyDS (Ministerio de Ambiente y Desarrollo Sostenible) (2015) Tercera Comunicación Nacional del Cambio Climático. Available at https://www.argentina.gob.ar/ambiente/cambio-climatico/tercera-comunicacion. [Accessed 20 August 2021]

Panek JA, Matson PA, Ortíz-Monasterio I, Brooks P (2000) Distinguishing nitrification and denitrification sources of N2O in Mexican wheat system using 15N. Ecological Applications 10, 506–514.
Distinguishing nitrification and denitrification sources of N2O in Mexican wheat system using 15N.Crossref | GoogleScholarGoogle Scholar |

Picone LI, Bayer C, Videla CC, Rizzalli RH, Casanave Ponti SM, Andrade FH, García FO (2021) Nitrous oxide emissions in maize on Mollisols in the Pampas of Argentina. Geoderma Regional 24, e00362
Nitrous oxide emissions in maize on Mollisols in the Pampas of Argentina.Crossref | GoogleScholarGoogle Scholar |

Rimski-Korsakov H, Zubillaga MS, Landriscini MR, Lavado RS (2016) Maize and cover crop sequence in the Pampas: effect of fertilization and water stress on the fate of nitrogen. Journal of Soil and Water Conservation 71, 12–20.
Maize and cover crop sequence in the Pampas: effect of fertilization and water stress on the fate of nitrogen.Crossref | GoogleScholarGoogle Scholar |

Robertson GP, Groffman PM (2007) Nitrogen transformations. In ‘Soil microbiology, ecology, and biochemistry’. 3rd edn. (Ed. EA Paul) pp. 341–364. (Elsevier: Burlington)

Salvagiotti F, Castellarín JM, Ferraguti FJ, Pedrol HM (2011) Dosis óptima económica de nitrógeno en maíz según potencial de producción y disponibilidad de nitrógeno en la región pampeana norte. Ciencia del Suelo 29, 199–212.

Scheiner JD, Gutiérrez-Boem FH, Lavado RS (2002) Sunflower nitrogen requirement and 15N fertilizer recovery in Western Pampas, Argentina. European Journal of Agronomy 17, 73–79.
Sunflower nitrogen requirement and 15N fertilizer recovery in Western Pampas, Argentina.Crossref | GoogleScholarGoogle Scholar |

Shcherbak I, Millar N, Robertson GP (2014) Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America 111, 9199–9204.
Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen.Crossref | GoogleScholarGoogle Scholar | 24927583PubMed |

Sistani KR, Jn-Baptiste M, Lovanh N, Cook KL (2011) Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers. Journal of Environmental Quality 40, 1797–1805.
Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers.Crossref | GoogleScholarGoogle Scholar | 22031562PubMed |

USDA (1998) ‘Keys to soil taxonomy.’ English edn. (Soil Survey Staff, United States Department of Agriculture, Natural Resources Conservation Service)

Venterea RT, Burger M, Spokas KA (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. Journal of Environmental Quality 34, 1467–1477.
Nitrogen oxide and methane emissions under varying tillage and fertilizer management.Crossref | GoogleScholarGoogle Scholar | 16091599PubMed |

Venterea RT, Dolan MS, Ochsner TE (2010) Urea decreases nitrous oxide emissions compared with anhydrous ammonia in a Minnesota corn cropping system. Soil Science Society of American Journal 74, 407–418.
Urea decreases nitrous oxide emissions compared with anhydrous ammonia in a Minnesota corn cropping system.Crossref | GoogleScholarGoogle Scholar |