Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Forms of inorganic phosphorus in carbonatic soils in the Pantanal of Mato Grosso do Sul, Brazil

Naelmo de Souza Oliveira A , Jolimar Antonio Schiavo https://orcid.org/0000-0003-0061-4726 A E , Laís Thomaz Laranjeira A , Eloise Mello Viana de Moraes B , Miriam Ferreira Lima A , Geisielly Pereira Nunes C and Marcos Gervasio Pereira https://orcid.org/0000-0002-1402-3612 D
+ Author Affiliations
- Author Affiliations

A Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade Universitária de Aquidauana, Rodovia Graziela Barroso, km 12, Aquidauana, Mato Grosso do Sul, Brazil. CEP:79200-000.

B Universidade Federal de Mato Grosso do Sul, UFMS, Rua Oscar Trindade de Barros, 740, Serraria, Aquidauana, Mato Grosso do Sul, Brazil.

C Universidade Federal da Grande Dourados, UFGD, Cidade Universitária de Dourados, Rodovia Dourados-Itahum km 12, Dourados, Mato Grosso do Sul, Brazil.

D Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Agronomia, Departamento de solos. BR-465, Seropédica, Rio de Janeiro, Brazil.

E Corresponding author: Email: schiavo@uems.br

Soil Research 59(7) 737-745 https://doi.org/10.1071/SR21007
Submitted: 13 January 2021  Accepted: 19 March 2021   Published: 22 June 2021

Abstract

The western region of the southern Pantanal is characterised by soils with high phosphorus (P) contents, derived from materials from the surrounding lithostratigraphic units, accumulated by fluvial transport. However, studies on forms and availability of P in these soils are scarce. The objective of this study was to evaluate the different forms of inorganic P and their relationship with some attributes of carbonatic soils in the Pantanal of Mato Grosso do Sul, Brazil. Hedley’s sequential fractionation scheme was used to evaluate the forms of P in soil profiles: Kastanozems (profiles P1 and P3) and Gleysol (profile P2). Total P contents were similar in the three profiles, 3782–5637 mg kg–1, with mean values of 22% for organic P and 46% for inorganic P (P.i). The P.i results indicated that in the profiles there was a predominance of inorganic forms of P in the following order: P-NaOH 0.5 mol L–1 > P-NaHCO3 > P-NaOH 0.1 mol L–1 > P-HCl, that is, adsorbed to microaggregates, labile, adsorbed to oxides and precipitated with calcium (Ca), respectively. The highest values of total organic P were verified in the surface horizons, with high correlation with total P contents. Residual P contents were high in all profiles, representing 29.0–33.3% of the total P, being correlated with CaCO3 contents. The studied profiles had high contents of labile P, with the highest values in the fraction P.i-NaHCO3, possibly associated with the processes of reduction of iron during the periods of floods, making the adsorbed P available. The contents of P.i-NaOH 0.1 mol L–1, a moderately labile fraction adsorbed to oxides, showed few differences compared to the non-labile fractions associated with Ca (P.i-HCl). Possibly, organic matter was bound to Ca, inhibiting the formation of precipitates of Ca with P and making P available for the more labile fractions.

Keywords: Secondary carbonate, Flood cycle, Phosphorus fractionation, Organic matter, Iron reduction.


References

Adorno RR, Do Carmo DA, Germs G, Walde DHG, Denezine M, Boggiani PC, Silva SCS, Vasconcelos JR, Tobias TC, Guimarães EM, Vieira LC, Figueiredo MF, Moraes R, Caminha SA, Suarez PAZ, Rodriques CV, Caixeta GM, Pinho D, Schneider G, Muyamba R (2017) Cloudina lucianoi (Beurlen and Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: Taxonomy, analysis of stratigraphic distribution and biostratigraphy. Precambrian Research 301, 19–35.
Cloudina lucianoi (Beurlen and Sommer, 1957), Tamengo Formation, Ediacaran, Brazil: Taxonomy, analysis of stratigraphic distribution and biostratigraphy.Crossref | GoogleScholarGoogle Scholar |

Agbenin JO, Tiessen H (1994) Transformações de fósforo em uma sequência topossômica de litosol e cambissolos do semi-árido nordestino. Geoderma 62, 345–362.
Transformações de fósforo em uma sequência topossômica de litosol e cambissolos do semi-árido nordestino.Crossref | GoogleScholarGoogle Scholar |

Araújo MSB, Schaefer CER, Sampaio EVSB (2004) Soil phosphorus fractions from toposequences of semi-arid Latosols and Luvisols in northeastern Brazil. Geoderma 119, 309–321.
Soil phosphorus fractions from toposequences of semi-arid Latosols and Luvisols in northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Assine ML, Silva A (2009) Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil. Geomorphology 113, 189–199.
Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil.Crossref | GoogleScholarGoogle Scholar |

Barrow NJ (2021) Comparing two theories about the nature of soil phosphate. European Journal of Soil Science 72, 679–685.
Comparing two theories about the nature of soil phosphate.Crossref | GoogleScholarGoogle Scholar |

Barrow NJ, Sen A, Roy N, Debnath A (2021) The soil phosphate fractionation fallacy. Plant and Soil 459, 1–11.
The soil phosphate fractionation fallacy.Crossref | GoogleScholarGoogle Scholar |

Boggiani PC, Fairchild TR, Coimbra AM (1993) O grupo Corumbá (Neoproterozóico-Cambriano) na região central da Serra da Bodoquena (Faixa Paraguai) Mato Grosso do Sul. Revista Brasileira de Geociencias 23, 301–305.
O grupo Corumbá (Neoproterozóico-Cambriano) na região central da Serra da Bodoquena (Faixa Paraguai) Mato Grosso do Sul.Crossref | GoogleScholarGoogle Scholar |

Borggaard OK, Jdrgensen SS, Moberg JP, Raben‐Lange B (1990) Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. Journal of Soil Science 41, 443–449.
Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils.Crossref | GoogleScholarGoogle Scholar |

Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry 14, 319–329.
Measurement of microbial biomass phosphorus in soil.Crossref | GoogleScholarGoogle Scholar |

Camargo AO, Moniz AC, Jorge JÁ, Valadares JMAS (1986) Métodos de análises química, mineralógica e física de solos do Instituto Agronômico de Campinas. Campinas: Instituto Agronômico de Campinas. Boletim Técnico. 106, Campinas.

Chacón N, Dezzeo N, Munoz B, Rodríguez JM (2005) Implications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco River, Venezuela. Biogeochemistry 73, 555–566.
Implications of soil organic carbon and the biogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests of the lower Orinoco River, Venezuela.Crossref | GoogleScholarGoogle Scholar |

Chacón N, Silver WL, Dubinsky EA, Cusack DF (2006) Iron reduction and soil phosphorus solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78, 67–84.
Iron reduction and soil phosphorus solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound.Crossref | GoogleScholarGoogle Scholar |

Condron LM, Newman S (2011) Revisiting the fundamentals of phosphorus fractionation of sediments and soils. Journal of Soils and Sediments 11, 830–840.
Revisiting the fundamentals of phosphorus fractionation of sediments and soils.Crossref | GoogleScholarGoogle Scholar |

Condron LM, Goh KM, Newman RH (1985) Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis. European Journal of Soil Science 36, 199–207.
Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis.Crossref | GoogleScholarGoogle Scholar |

Coringa EDAO, Couto EG, Perez XLO, Torrado PV (2012) Atributos de solos hidromórficos no Pantanal Norte Matogrossense. Acta Amazonica 42, 19–28.
Atributos de solos hidromórficos no Pantanal Norte Matogrossense.Crossref | GoogleScholarGoogle Scholar |

Couto EG, Oliveira V (2011) The soil diversity of the Pantanal. in ‘The Pantanal of Mato Grosso: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland.’ (Eds. WJ Junk, CJ da Silva, C Nunes da Cunha, KM Wantzen) pp. 71–102. (Pensoft: Sofia)

Dick WA, Tabatabai MA (1977) Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds. Journal of Environmental Quality 6, 82–85.
Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds.Crossref | GoogleScholarGoogle Scholar |

Donagemma GK, Ruiz HA, Alvarez VVH, Ker JC, Fontes MPF (2008) Fósforo remanescente em argila e silte retirados de Latossolos após pré-tratamentos na análise textural. Revista Brasileira de Ciência do Solo 32, 1785–1791.
Fósforo remanescente em argila e silte retirados de Latossolos após pré-tratamentos na análise textural.Crossref | GoogleScholarGoogle Scholar |

Garcia-Montiel DC, Neill C, Melillo J, Thomas S, Steudler PA, Cerri CC (2000) Soil phosphorus transformations following forest clearing for pasture in the Brazilian Amazon. Soil Science Society of America Journal 64, 1792–1804.
Soil phosphorus transformations following forest clearing for pasture in the Brazilian Amazon.Crossref | GoogleScholarGoogle Scholar |

Gatiboni LC, Condron LM (2021) A rapid fractionation method for assessing key soil phosphorus parameters in agroecosystems. Geoderma 385, 114893
A rapid fractionation method for assessing key soil phosphorus parameters in agroecosystems.Crossref | GoogleScholarGoogle Scholar |

Gu C, Margenot AJ (2021) Navigating limitations and opportunities of soil phosphorus fractionation. Plant and Soil 459, 13–17.
Navigating limitations and opportunities of soil phosphorus fractionation.Crossref | GoogleScholarGoogle Scholar |

Guppy C (2021) Is soil phosphorus fractionation as valuable as we think? Plant and Soil 459, 19–21.
Is soil phosphorus fractionation as valuable as we think?Crossref | GoogleScholarGoogle Scholar |

Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal 46, 970–976.
Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations.Crossref | GoogleScholarGoogle Scholar |

Henderson R, Kabengi N, Mantripragada N, Cabrera M, Hassan S, Thompson A (2012) Anoxia-induced release of colloid-and nanoparticle-bound phosphorus in grassland soils. Environmental Science & Technology 46, 11727–11734.
Anoxia-induced release of colloid-and nanoparticle-bound phosphorus in grassland soils.Crossref | GoogleScholarGoogle Scholar |

Hou E, Tan X, Heenan M, Wen D (2018) A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method. Scientific Data 5, 108166
A global dataset of plant available and unavailable phosphorus in natural soils derived by Hedley method.Crossref | GoogleScholarGoogle Scholar | 30129932PubMed |

IBGE (2019) ‘Biomas e Sistema Costeiro-Marinho do Brasil: compatível com a escala 1:250.000.’ (IBGE, Coordenação de Recursos Naturais e Estudos Ambientais: Rio de Janeiro). Available at http://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhesandid=2101676. [verified 9 May 2020].

IUSS Working Group WRB (2015) ‘World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps.’ (FAO: Rome, Italy)

Jien SH, Baillie I, Hu CC, Chen TH, Iizuka Y, Chiu CY (2016) Forms and distribution of phosphorus in a placic podzolic toposequence in a subtropical subalpine forest, Taiwan. Catena 140, 145–154.
Forms and distribution of phosphorus in a placic podzolic toposequence in a subtropical subalpine forest, Taiwan.Crossref | GoogleScholarGoogle Scholar |

Lei Y, Song B, Saakes M, Van Der Weijden RD, Buisman CJ (2018) Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate. Water Research 142, 10–17.
Interaction of calcium, phosphorus and natural organic matter in electrochemical recovery of phosphate.Crossref | GoogleScholarGoogle Scholar | 29807252PubMed |

Lei Y, Hidayat I, Saakes M, van der Weijden R, Buisman CJ (2019) Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater. Chemical Engineering Journal 362, 453–459.
Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater.Crossref | GoogleScholarGoogle Scholar |

Lopes AS, Guilherme LAG (1994) Solos sob cerrado: manejo da fertilidade para a produção agropecuária. Bol. Técnico No 5 1–62. Available at http://anda.org.br/wp-content/uploads/2018/10/boletim_05.pdf

Ma Y, Ma J, Peng H, Weng L, Chen Y, Li Y (2019) Effects of iron, calcium, and organic matter on phosphorus behavior in fluvo-aquic soil: farmland investigation and aging experiments. J Soils Sediments 19, 3994–4004.
Effects of iron, calcium, and organic matter on phosphorus behavior in fluvo-aquic soil: farmland investigation and aging experiments.Crossref | GoogleScholarGoogle Scholar |

Mehra OP, Jackson ML (1960) Iron oxides removal from soils and clays by a dithionite-citrate-bicarbonate system buffered with bicarbonate sodium. Clays and Clay Minerals 7, 317–327.
Iron oxides removal from soils and clays by a dithionite-citrate-bicarbonate system buffered with bicarbonate sodium.Crossref | GoogleScholarGoogle Scholar |

Murphy James, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27, 31–36.
A modified single solution method for the determination of phosphate in natural waters.Crossref | GoogleScholarGoogle Scholar |

Oliveira EC (2009) Tufas Calcárias da Serra da Bodoquena, MS. MSc Dissertation, Universidade de São Paulo, São Paulo, Brazil.

Olsen SR, Sommers LE (1982) Phosphorus in AL Page, (Ed). Methods of Soil Analysis. Part2. Chemical and Microbiological Properties. ASA Monograph 9, 403–430.

Perassi I, Borgnino L (2014) Adsorption and surface precipitation of phosphate onto CaCO3–montmorillonite: effect of pH, ionic strength and competition with humic acid. Geoderma 232–234, 600–608.
Adsorption and surface precipitation of phosphate onto CaCO3–montmorillonite: effect of pH, ionic strength and competition with humic acid.Crossref | GoogleScholarGoogle Scholar |

Pereira MG, Schiavo JA, Fontana A, Neto D, Hypólito A, Miranda LPMD (2013) Caracterização e classificação de solos em uma topossequência sobre calcário na Serra da Bodoquena, MS Revista Brasileira de Ciência do Solo 37, 25–36.
Caracterização e classificação de solos em uma topossequência sobre calcário na Serra da Bodoquena, MSCrossref | GoogleScholarGoogle Scholar |

Piacentini T, Boggiani PC, Yamamoto JK, Freitas BT, Cruz Campanha G (2007) A Formação ferrífera associada à sedimentação glaciogênica da Formação Puga (Marinoano) na Serra da Bodoquena, MS. Revista Brasileira de Geociencias 37, 530–541.
A Formação ferrífera associada à sedimentação glaciogênica da Formação Puga (Marinoano) na Serra da Bodoquena, MS.Crossref | GoogleScholarGoogle Scholar |

Por FD (2012) ‘The Pantanal of Mato Grosso (Brazil): world’s largest wetlands.’ (Springer Science & Business Media: London)

R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.

Santos RD, Santos HG, Ker JC, Anjos LHC, Shimizu SH (2015) ‘Manual de descrição e coleta de solo no campo.’ 7th edn. (Sociedade Brasileira de Ciência do Solo/Embrapa Solos: Viçosa)

Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araújo Filho JC, Oliveira JB, Cunha TJF (2018) ‘Sistema Brasileiro de Classificação de Solos.’ 5th edn. (Embrapa: Brasília)

Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat‐Lösung. Zeitschrift für Pflanzenernährung, Düngung. Bodenkunde 105, 194–202.
Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat‐Lösung.Crossref | GoogleScholarGoogle Scholar |

Shenker M, Seitelbach S, Brand S, Haim A, Litaor MI (2005) Redox reactions and phosphorus release in re‐flooded soils of an altered wetland. European Journal of Soil Science 56, 515–525.
Redox reactions and phosphorus release in re‐flooded soils of an altered wetland.Crossref | GoogleScholarGoogle Scholar |

Silva JDSV, Abdon MM (1998) Delimitação do Pantanal brasileiro e suas sub-regiões. Pesquisa Agropecuária Brasileira 33, 1703–1711.

Soares JJ, Oliveira AKMD (2009) O paratudal do Pantanal de Miranda, Corumbá-MS, Brasil. Revista Árvore 33, 339–347.
O paratudal do Pantanal de Miranda, Corumbá-MS, Brasil.Crossref | GoogleScholarGoogle Scholar |

Teixeira PC, Donagema GK, Fontana A, Teixeira WG (2017) ‘Manual de métodos de análise de solo.’ 3rd edn. (Embrapa: Rio de Janeiro)

Vázquez S, Morales LA, Fernández López C, Dalurzo HC (2011) Fertilización fosfatada y fracciones de fósforo en Alfisoles, Ultisoles y Oxisoles. Ciencia del Suelo 29, 161–171.

Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chemical Reviews 108, 4628–4669.
Calcium orthophosphates: crystallization and dissolution.Crossref | GoogleScholarGoogle Scholar | 18816145PubMed |

Weyers E, Strawn DG, Peak D, Baker LL (2017) Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC. Chemosphere 184, 99–105.
Inhibition of phosphorus sorption on calcite by dairy manure-sourced DOC.Crossref | GoogleScholarGoogle Scholar | 28582769PubMed |

Yee AR, Broersma K (1987) The Bray, Mehlich and Kelowna soil P tests as affected by soil carbonates. Canadian Journal of Soil Science 67, 399–404.
The Bray, Mehlich and Kelowna soil P tests as affected by soil carbonates.Crossref | GoogleScholarGoogle Scholar |

Zbíral J (2000) Determination of phosphorus in calcareous soils by Mehlich 3, Mehlich 2, CAL, and Egner extractants. Communications in Soil Science and Plant Analysis 31, 3037–3048.
Determination of phosphorus in calcareous soils by Mehlich 3, Mehlich 2, CAL, and Egner extractants.Crossref | GoogleScholarGoogle Scholar |