Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Ratio of CO2 and O2 as index for categorising soil biological activity in sugarcane areas under contrasting straw management regimes

Risely Ferraz de Almeida A E , Daniel de Bortoli Teixeira B , Rafael Montanari C , Antonio César Bolonhezi C , Edson Belisário Teixeira C , Mara Regina Moitinho A , Alan Rodrigo Panosso A , Kurt A. Spokas D and Newton La Scala Júnior A
+ Author Affiliations
- Author Affiliations

A São Paulo State University (FCAV/UNESP), Jaboticabal, São Paulo, Brazil.

B University of Marília (Unimar), Marília, São Paulo, Brazil.

C São Paulo State University (FEIS/UNESP), Ilha Solteira, São Paulo, Brazil.

D ARS, USDA, Soil and Water Res Management Unit, St Paul, MN, 55108, USA.

E Corresponding author. Email: rizely@gmail.com

Soil Research 56(4) 373-381 https://doi.org/10.1071/SR16344
Submitted: 7 December 2016  Accepted: 27 December 2017   Published: 20 April 2018

Abstract

This study was developed in a sugarcane area under contrasting management regimes defined by mechanical green harvesting (GH) and burning harvesting (BH) to test the hypotheses that the ratio of carbon dioxide (CO2) and oxygen (O2), known as the apparent respiratory quotient (ARQ), can be used to categorise soil biological activity. The study aimed to (i) examine the profile and relationship between the CO2 flux (FCO2) and the O2 flux (FO2) in a sugarcane area under mechanical harvesting with straw burning (BH) and mechanical harvesting with maintenance of straw (GH), considering soil moisture; (ii) and suggest the use of ARQ as an index for categorising the biological activity of soils. Our results showed consistently lower FCO2 for soil moisture in the range of 6.0–8.6% for both management regimes. The soil moisture increments triggered a decrease in FO2 and an increase in FCO2 and ARQ. The FCO2 and FO2 were positively correlated under BH. The BH yielded a cumulative CO2 emission of 53.68% higher than for GH. Overall, our findings revealed that soil moisture affected the O2 uptake and CO2 emission profile of soil, limiting O2 uptake and increasing CO2 releases for water-filled porosity below 70%. The GH management system, which incorporates sugarcane residues into the superficial layer of the soil, can help protect against soil erosion. The ARQ can be used as an index to categorise biological activity in soil, where ARQ values close to 1 can be considered a reflection of aerobic activity with balance between CO2 production and O2 consumption.

Additional keywords: CO2 emission, sugarcane straw management, O2 uptake, respiratory quotient, soil biological activity.


References

Alef K (1995) Soil respiration. In ‘Methods in applied soil microbiology’. (Eds K Alef, P Nannipieri) pp. 214–219. (Academic Press: London)

Almeida D, Klauberg Filho O, Felipe AF, Almeida HC (2009) Carbono, nitrogênio e fósforo microbiano do solo sob diferentes coberturas empomar de produção orgânica de maçã no sul do Brasil. Bragantia 68, 1069–1077.
Carbono, nitrogênio e fósforo microbiano do solo sob diferentes coberturas empomar de produção orgânica de maçã no sul do Brasil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlOls78%3D&md5=f89892b2f771354739775625dbb59a2eCAS |

Almeida RF, Silveira CH, Mikhael JE, Franco FO, Ribeiro BT, Ferreira AS, Mendonça ES, Wendling B (2014) CO2 emissions from soil incubated with sugarcane straw and nitrogen fertilizer. African Journal of Biotechnology 13, 3376–3384.

Almeida RF, Silveira CH, Mota RP, Moitinho M, Arruda EM, Mendonça ES, La Scala N, Wendling B (2015) For how long does the quality and quantity of residues in the soil affect the carbon compartments and CO2-C emissions? Journal of Soils and Sediments 16, 1–11.

Angert A, Yakir D, Rodeghiero M, Preisler Y, Davidson EA, Weiner T (2015) Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosciences 12, 2089–2099.
Using O2 to study the relationships between soil CO2 efflux and soil respiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVels7nP&md5=283acd9bc7a6f3e3ead1099ba935bb8bCAS |

Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. ln: ‘Plant roots: the hidden half’. 3rd edn. (Eds Y Waisel, A Eshel, U Kafkafi) pp. 729–761. (CRC Press: New York)

Badía D, Martí C, Aguirre AJ (2013) Residue management effects on CO2 efflux and C storage in different Mediterranean agricultural soils. The Science of the Total Environment 465, 233–239.
Residue management effects on CO2 efflux and C storage in different Mediterranean agricultural soils.Crossref | GoogleScholarGoogle Scholar |

Bicalho ES, Panosso AR, Teixeira DDB, Miranda JGV, Pereira GT, La Scala N (2014) Spatial variability structure of soil CO2 emission and soil attributes in a sugarcane area. Agriculture, Ecosystems & Environment 189, 206–215.
Spatial variability structure of soil CO2 emission and soil attributes in a sugarcane area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslGlsbw%3D&md5=0c9c88755f5cad2e23a80365efea398fCAS |

Ceddia MB, Anjos LHC, Lima E, Ravelli Neto A, Silva LA (1999) Sistemas de colheita da cana-de-açúcar e alterações nas propriedades físicas de um solo podzólico amarelo no estado do Espírito Santo. Pesquisa Agropecuária Brasileira 34, 1467–1473.
Sistemas de colheita da cana-de-açúcar e alterações nas propriedades físicas de um solo podzólico amarelo no estado do Espírito Santo.Crossref | GoogleScholarGoogle Scholar |

Chen X, Dhungel J, Bhattarai SP, Torabi M, Pendergast T, Midmore DJ (2011) Impact of oxygation on soil respiration, yield and water use efficiency of three crop species. Journal of Plant Ecology 4, 236–248.
Impact of oxygation on soil respiration, yield and water use efficiency of three crop species.Crossref | GoogleScholarGoogle Scholar |

Conab (2014). Acompanhamento da safra brasileira: cana-de-açúcar, primeiro levantamento. Available at: <http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_04_09_10_29_31_boletim_cana_portugues_abril_2013_1o_lev.pdf>. Accessed 10 March 2017.

Cook FJ, Knight DJH, Kelliher FM (2007) Oxygen transport in soil and the vertical distribution of roots. Australian Journal of Soil Research 45, 101–110.
Oxygen transport in soil and the vertical distribution of roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFygu74%3D&md5=8d3e05a68c0d9d71640a9636e92f2458CAS |

Corradi MM, Panosso AR, Martins Filho MV, Scala NL (2013) Crop residues on short-term CO2 emissions in sugarcane production areas. Engenharia Agrícola 33, 699–708.
Crop residues on short-term CO2 emissions in sugarcane production areas.Crossref | GoogleScholarGoogle Scholar |

Correia NM, Durigan JC (2004) Emergência de plantas daninhas em solo coberto com palha de cana-de-açúcar. Planta Daninha 22, 11–17.
Emergência de plantas daninhas em solo coberto com palha de cana-de-açúcar.Crossref | GoogleScholarGoogle Scholar |

Costa SM, Mazzola PG, Silva JCAR, Pahl R, Pessoa A, Costa SA (2013) Use of sugar cane straw as a source of cellulose for textile fiber production. Industrial Crops and Products 42, 189–194.
Use of sugar cane straw as a source of cellulose for textile fiber production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1entLjK&md5=951cb35b8f20912b703489b53d0819f8CAS |

Cunha EQ, Stone LF, Ferreira EPB, Didonet AD, Moreira JAA, Leandro WM (2011) Sistemas de preparo dosolo e culturas de cobertura na produção orgânica de feijão e Milho. II—Atributos biológicos do solo. Revista Brasileira de Ciência do Solo 35, 603–611.
Sistemas de preparo dosolo e culturas de cobertura na produção orgânica de feijão e Milho. II—Atributos biológicos do solo.Crossref | GoogleScholarGoogle Scholar |

Dilly O (2003) Regulation of the respiratory quotient of soil microbiota by availability of nutrients. Microbial Ecology 43, 375–381.
Regulation of the respiratory quotient of soil microbiota by availability of nutrients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFeqt74%3D&md5=fc28e6fe2356267614c8ef704a725287CAS |

Doran JW, Mielke LN, Powe JF (1990) Microbial activity as regulated by soil water filled pore space (Transactions of the 14th International Congress on Soil Science, Kyoto, Japan. 3), pp. 94–99.

Elberling B, Askaer L, Jørgensen CJ, Joensen HP, Keuhl M, Glud RM, Lauritsen FR (2011) Linking soil O2, CO2, and CH4 concentrations in a wetland soil: implications for CO2 and CH4 fluxes. Environmental Science & Technology 45, 3393–3399.
Linking soil O2, CO2, and CH4 concentrations in a wetland soil: implications for CO2 and CH4 fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVWmsb0%3D&md5=a656eea7d18f5f3cc4a4fb618a02cd19CAS |

Embrapa (1997) ‘Manual de métodos de análise de solo.’ 2nd edn. (Embrapa: Rio de Janeiro)

Embrapa (2014) ‘Manejo Brasileiro de Classificação do solo.’ 3rd edn (Embrapa: Rio de Janeiro)

Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. Journal of Tropical Ecology 22, 565–574.
Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana.Crossref | GoogleScholarGoogle Scholar |

De Figueiredo EB, La Scala N (2011) Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil. Agriculture, Ecosystems & Environment 141, 77–85.
Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil.Crossref | GoogleScholarGoogle Scholar |

Franzluebbers AJ (1999) Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Applied Soil Ecology 11, 91–101.
Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils.Crossref | GoogleScholarGoogle Scholar |

Gardini E, Antisari LV, Guerzoni ME, Sequi P (1991) A simple gas chromatographic approach to evaluate CO2 release, N2O evolution, and O2 uptake from soil. Biology and Fertility of Soils 12, 1–4.
A simple gas chromatographic approach to evaluate CO2 release, N2O evolution, and O2 uptake from soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1Omtbw%3D&md5=dabe99da6bc23ed9eb0c1c81cbfea1d3CAS |

Howard DM, Howard PJA (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biology & Biochemistry 25, 1537–1546.
Relationships between CO2 evolution, moisture content and temperature for a range of soil types.Crossref | GoogleScholarGoogle Scholar |

Keeling RF, Shertz SR (1992) Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358, 723–727.
Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslGgurc%3D&md5=2fb5f48e1ce299e18c36cc8ba2ad5f67CAS |

Knicker H, González-Vila FJ, González-Vázquez R (2013) Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biology & Biochemistry 56, 31–39.
Biodegradability of organic matter in fire-affected mineral soils of Southern Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslynsbbK&md5=5c6a6bd3f22edb1ab3e0c14f1e2bbdccCAS |

Kyaw Tha Paw U, Xu L, Ideris AJ, Kochendorfer J, Wharton S, Rolston DE, Hsiao TC (2006) Simultaneous carbon dioxide and oxygen measurements to improve soil efflux estimates. Kearney Foundation of Soil Science: soil carbon and California’s terrestrial ecosystems. (Final Report, 2004211, 1/1/2005–12/31/2006). Available at: < http://kearney.ucdavis.edu/OLD%20MISSION/2004_Final_Reports/2004211PawU_FINALkms.pdf>. Accessed in 1 January 2017.

Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22.
Soil carbon sequestration to mitigate climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslSmsLY%3D&md5=ca7c3cc5fccea30e80bec300da4a0b7fCAS |

Lal R (2009) Challenges and opportunities in soil organic matter research. European Journal of Soil Science 60, 158–169.
Challenges and opportunities in soil organic matter research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVWntLo%3D&md5=a9fe267ebc9af4d0687a3e32cbb8b7b5CAS |

Lal R, Kimble JM (1997) Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems 49, 243–253.
Conservation tillage for carbon sequestration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslCqtrk%3D&md5=13f568366057a9ae4509248dc69e9a05CAS |

Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and no-tilled soils. Soil Science Society of America Journal 48, 1267–1272.
Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and no-tilled soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtFaitL4%3D&md5=9b71fe55d0f62791da2f88c59bc5e8bdCAS |

Luo Z, Hu C, Zhou J, Cen K (2006) Stability of mercury on three activated carbon sorbents. Fuel Processing Technology 87, 679–685.
Stability of mercury on three activated carbon sorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslSqs7o%3D&md5=beebefd4139bbd840e6153254058e998CAS |

Marques TA, Sasso CG, Sato AM, Souza GM (2009) Queima do canavial: aspectos sobre a biomassa vegetal, fertilidade do solo e emissão de CO2 para atmosfera. Bioscience Journal 25, 83–89.

Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176.
Soil warming and carbon-cycle feedbacks to the climate system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSkt7k%3D&md5=3e068d4e64599b71bf5f4e83d3452a6eCAS |

Oliveira MW, Trivelin PCO, Penatti CP, Piccolo MC (1999) Decomposição e liberação de nutrientes da palha de cana-deaçúcar em campo. Pesquisa Agropecuária Brasileira 34, 2359–2362.
Decomposição e liberação de nutrientes da palha de cana-deaçúcar em campo.Crossref | GoogleScholarGoogle Scholar |

Panosso AR, Marques Júnior J, Pereira GT, La Scala Júnior N (2009) Spatial and temporal variability of soil CO2 emission in a sugarcane area under green and slash-and-burn managements. Soil & Tillage Research 105, 275–282.
Spatial and temporal variability of soil CO2 emission in a sugarcane area under green and slash-and-burn managements.Crossref | GoogleScholarGoogle Scholar |

Panosso AR, Marques J, Milori DMBP, Ferraudo AS, Barbieri DM, Pereira GT, La Scala N (2011) Soil CO2 emission and its relation to soil properties in sugarcane areas under slash-and-burn and green harvest. Soil & Tillage Research 111, 190–196.
Soil CO2 emission and its relation to soil properties in sugarcane areas under slash-and-burn and green harvest.Crossref | GoogleScholarGoogle Scholar |

Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644.
Updated world map of the Köppen-Geiger climate classification.Crossref | GoogleScholarGoogle Scholar |

Pereira ES, Queiroz AC, Paulino MF, Cecon PR, Valadares Filho SC, Miranda LF, Fernandes AM, Cabral LC (2000) Determinação das frações protéicas e de carboidratos e taxas de degradação in vitro da cana-de-açúcar, da cama de frango e do farelo de algodão. Revista Brasileira de Zootecnia 29, 1887–1893.
Determinação das frações protéicas e de carboidratos e taxas de degradação in vitro da cana-de-açúcar, da cama de frango e do farelo de algodão.Crossref | GoogleScholarGoogle Scholar |

Ranjard L, Richaume A (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Research in Microbiology 152, 707–716.
Quantitative and qualitative microscale distribution of bacteria in soil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mnht1SqsQ%3D%3D&md5=e10df8f6da7b8b4cef947a6a0c13b008CAS |

Silva M A S, Mafra AL, Albuquerque JA, Bayer C, Mielniczuk J (2005) Atributos físicos do solo relacionados ao armazenamento de água em um Argissolo Vermelho sob diferentes sistemas de preparo. Ciência Rural 35, 544–552.
Atributos físicos do solo relacionados ao armazenamento de água em um Argissolo Vermelho sob diferentes sistemas de preparo.Crossref | GoogleScholarGoogle Scholar |

Smagin AV (2006) Soil phases: the gaseous phase. In ‘Soils: basic concepts and future challenges’. 1st edn. (Eds G Certini, R Scalenghe) pp. 75–90. (Cambridge University Press: New York)

Smagin AV, Dolgikhb AV, Karelin DV (2016) Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod. Eurasian Soil Science 49, 450–456.
Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotVyqs7k%3D&md5=b56f02d54f56e637824c45c211eabdeaCAS |

Soil Survey Staff (2014) ‘Keys to Soil Taxonomy.’ 12th edn. (United States Department of Agriculture: United States of America)

Stern L, Baisden WT, Amundson R (1999) Processes controlling the oxygen isotope ratio of soil CO2: analytic and numerical modeling. Geochimica et Cosmochimica Acta 63, 799–814.
Processes controlling the oxygen isotope ratio of soil CO2: analytic and numerical modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Sgu7s%3D&md5=756c4f737f66fd5c9d630098ff17ac3aCAS |

Stotzky G (1960) A simple method for the determination of the respiratory quotient of soils. Canadian Journal of Microbiology 6, 439–452.
A simple method for the determination of the respiratory quotient of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXht1Squrs%3D&md5=0b54fb40dc536a27c8f756dd23fb77b3CAS |

Tofoli GR, Velini ED, Negrisoli E, Cavenaghi AL, Martins D (2009) Dinâmica do tebuthiuron em palha de cana-de-açúcar. Planta Daninha 27, 815–821.
Dinâmica do tebuthiuron em palha de cana-de-açúcar.Crossref | GoogleScholarGoogle Scholar |

Urquiaga BM, Oliveira OC, Lima E, Guimarães DHV (1991) A Importância de não queimar a palha na cultura de cana-de-açúcar. Available at: <www.embrapa.br/agrobiologia/busca-de-publicacoes/-/publicacao/623354/a-importancia-de-nao-queimar-a-palha-na-cultura-de-cana-de-acucar>. Accessed 10 January 2017.

Wei S, Zhang X, McLaughlin NB, Liang A, Jia S, Chen X, Chen X (2014) Effect of soil temperature and soil moisture on CO2 flux from eroded landscape positions on black soil in Northeast China. Soil & Tillage Research 144, 119–125.
Effect of soil temperature and soil moisture on CO2 flux from eroded landscape positions on black soil in Northeast China.Crossref | GoogleScholarGoogle Scholar |

Wick AF, Phillips RL, Liebig MA, West M, Daniels WL (2012) Linkages between soil micro-site properties and CO2 and N2O emissions during a simulated thaw for a northern prairie Mollisol. Soil Biology & Biochemistry 50, 118–125.
Linkages between soil micro-site properties and CO2 and N2O emissions during a simulated thaw for a northern prairie Mollisol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlajsL0%3D&md5=cc3015678d1d571d6ea8aa5afc411906CAS |

Wolinska A, Stepniewska Z, Sxafranek-Nakonieczna A (2011) Effect of selected physical parameters on respiration activities in common Polish mineral soils. Polish Journal of Environmental Studies 20, 1075–1082.

Xu M, Qi Y (2001) Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology 7, 667–677.
Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California.Crossref | GoogleScholarGoogle Scholar |