Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Quantifying above and belowground biomass carbon inputs for sugar-cane production in Brazil

A. M. Silva-Olaya A E , C. A. Davies B , C. E. P. Cerri C , D. J. Allen B , F. F. C. Mello D and C. C. Cerri D
+ Author Affiliations
- Author Affiliations

A University of the Amazon, Street 17, Diagonal 17, Cr. 3F, Florencia 180002, Colombia.

B Shell Technology Centre Houston, 3333 Highway 6 South, Houston, TX 77082, USA.

C University of São Paulo ‘Luiz de Queiroz’ College of Agriculture, Av. Paduas Dias 11, Piracicaba 13400-970, Brazil.

D University of São Paulo – Center for Nuclear Energy in Agriculture, Av. Centenário 303, Piracicaba 13416-000, Brazil.

E Corresponding author. Email: amsolayaa@gmail.com

Soil Research 55(7) 640-648 https://doi.org/10.1071/SR16090
Submitted: 6 April 2016  Accepted: 10 January 2017   Published: 22 February 2017

Abstract

Expansion of sugarcane crop due to the increasing demand for sugar and ethanol can affect both existing soil carbon (C) stocks, and subsequent input of new C from above and belowground biomass, influencing the overall C intensity and C payback times due to the change of land use. We present above and belowground dry biomass production, shoot-to-root ratio (S : R) as well as the net annual C inputs to the soil for sugarcane in different ratoon stages. The selected areas were as follows: (1) recently planted sugarcane area (PC), (2) first year ratoon cane (RC1) and (3) 4-year ratoon cane (RC4), which were established under Typic Quartzipsamments located in north-eastern São Paulo State. The sugarcane S : R ratios ranged from 6.6 in PC to 3.4 in RC4, and total sugarcane C inputs from 29.6 to 30.8 Mg C ha–1. The overall C balance for land use change requires effects on soil C and also C inputs from previous and future land uses. The sugarcane C input was between 3.7 and 4.0 Mg C ha–1 for each sugarcane cycle of 5 years. When accounting for soil C stock changes and aboveground biomass C losses from the prior land use, the payback times for sugarcane biofuel C debts are reduced by 3, 2 and 1 years for Cerrado wooded, Cerrado grassland and pasture conversions into sugarcane respectively.

Additional keywords: ethanol, harvesting system without burning, land use change, roots, Saccharum spp., shoots, soil carbon.


References

Abastecimento C-CNd (2010) Perfil do setor de açúcar e álcool no Brasil, Edição para a safra 2008–2009, CONAB.

Abastecimento C-CNd (2012) Perfil do setor de açúcar e álcool no Brasil, Edição para a safra 2009–2010, CONAB.

Abayomi YA (1989) Effect of soil type and crop cycle on root development and distribution pattern of a commercial sugarcane cultivar under normal irrigation and field conditions at Bacita Estate, Nigeria. Turrialba 39, 78–84.

André AI, de Camargo CPR, Stolf NMC (2000) Crescimento de raízes de cana crua e queimada em dois ciclos. Scientia Agrícola 57, 653–659.

Antwerpen Rv, Lyne P, Meyer E, Browers M (2008) Effect of surface applied pressure by vehicles fitted with pneumatic tyres on properties of a virgin soil. Proceedings South African Sugar Technologist Association 81, 408–417.

Baier SL, Clements M, Griffiths CW, Ihrig JE (2009) Biofuels impact on crop and food prices: using an interactive spreadsheet. FRB International Finance Discussion Paper Number 967. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.6563&rep=rep1&type=pdf [verified 2 February 2017].

Ball-Coelho B, Sampaio EVSB, Tiessen H, Stewart JWB (1992) Root dynamics in plant and ratoon crops of sugar-cane. Plant and Soil 142, 297–305.
Root dynamics in plant and ratoon crops of sugar-cane.Crossref | GoogleScholarGoogle Scholar |

Beauclair, E. (1991) Relações entre algumas propriedades químicas do solo e a produtividade da cana-de-açúcar, através de regressão linear múltipla. MSc Thesis, University of Sao Paulo, Piracicaba, SP, Brazil.

Blair GJ, Chapman L, Whitbread AM, Ball-Coelho B, Larsen P, Tiessen H (1998) Soil carbon changes resulting from sugarcane trash management at two locations in Queensland, Australia, and in North-East Brazil. Australian Journal of Soil Research 36, 873–881.
Soil carbon changes resulting from sugarcane trash management at two locations in Queensland, Australia, and in North-East Brazil.Crossref | GoogleScholarGoogle Scholar |

Bolinder MA, Angers DA, Dubuc JP (1997) Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agriculture, Ecosystems & Environment 63, 61–66.
Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFyjsbw%3D&md5=6d1babfd7a51a6d7a9a242f253b100f0CAS |

Bolinder MA, Angers DA, Giroux M, Laverdiere MR (1999) Estimating C inputs retained as soil organic matter from corn (Zea Mays L.). Plant and Soil 215, 85–91.
Estimating C inputs retained as soil organic matter from corn (Zea Mays L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1amtg%3D%3D&md5=7bbd0ad62cf9a2aa716f8a64a5ef002eCAS |

Bolinder MA, Angers DA, Belanger G, Michaud R, Laverdiere MR (2002) Root biomass and shoot to root ratios of perennial forage crops in eastern Canada. Canadian Journal of Plant Science 82, 731–737.
Root biomass and shoot to root ratios of perennial forage crops in eastern Canada.Crossref | GoogleScholarGoogle Scholar |

Bolinder MA, VandenBygaart AJ, Gregorich EG, Angers DA, Janzen HH (2006) Modelling soil organic carbon stock change for estimating whole-farm greenhouse gas emissions. Canadian Journal of Soil Science 86, 419–429.
Modelling soil organic carbon stock change for estimating whole-farm greenhouse gas emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFKis78%3D&md5=beef9400115ff3cef467ac8d18e24f20CAS |

Bolinder MA, Janzen HH, Gregorich EG, Angers DA, VandenBygaart AJ (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems & Environment 118, 29–42.
An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada.Crossref | GoogleScholarGoogle Scholar |

Campbell CA, de Jong R (2001) Root-to-straw ratios – influence of moisture and rate of N fertilizer. Canadian Journal of Soil Science 81, 39–43.
Root-to-straw ratios – influence of moisture and rate of N fertilizer.Crossref | GoogleScholarGoogle Scholar |

Campbell CA, Zentner RP, Liang BC, Roloff G, Gregorich EC, Blomert B (2000) Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan – effect of crop rotations and fertilizers. Canadian Journal of Soil Science 80, 179–192.
Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan – effect of crop rotations and fertilizers.Crossref | GoogleScholarGoogle Scholar |

Canellas L, Velloso A, Marciano C, Ramalho J, Rumjanek V, Rezende C, Santos GA (2003) Propriedades químicas de um Cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo. Revista Brasileira de Ciencia do Solo 27, 935–944.
Propriedades químicas de um Cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFGnurs%3D&md5=3821c97d54fcaf0b5a2102f5c5a1cc1aCAS |

Casagrande AA (1991) ‘Tópicos de morfologia e fisiologia da cana-de-açúcar.’ (Funep: Jaboticabal)

Ceddia MB, Anjos Ld, Lima E, Ravelli Neto A, Silva Ld (1999) Sistemas de colheita da cana-de-açúcar e alterações nas propriedades físicas de um solo Podzólico Amarelo no Estado do Espírito Santo. Pesquisa Agropecuária Brasileira 34, 1467–1473.
Sistemas de colheita da cana-de-açúcar e alterações nas propriedades físicas de um solo Podzólico Amarelo no Estado do Espírito Santo.Crossref | GoogleScholarGoogle Scholar |

Cerri DGP, Magalhaes PSG (2012) Correlation of physical and chemical attributes of soil with sugarcane yield. Pesquisa Agropecuária Brasileira 47, 613–620.
Correlation of physical and chemical attributes of soil with sugarcane yield.Crossref | GoogleScholarGoogle Scholar |

Cerri C, Galdos M, Maia S, Bernoux M, Feigl B, Powlson D, Cerri C (2011) Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. European Journal of Soil Science 62, 23–28.
Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVGgtro%3D&md5=0f581297f3387a08b107536ba52e0d95CAS |

Change IPOC, Eggelstons S, Buendia L, Miwa K, Todd N, Tanabe K (2006) ‘IPCC Guidelines for national greenhouse gas inventories.’ (Institute for Global Environmental Strategies (IGES): Hayama)

de Castro Gava GJ, Trivelin PCO, de Oliveira MW, Penatti CP (2001) Crescimento e acúmulo de nitrogênio em cana-de-açúcar cultivada em solo coberto com palhada. Pesquisa Agropecuaria Brasileira 36, 1347–1354.

Dias FLF, Mazza JA, Matsuoka S, Perecin D, Maule RF (1999) Produtividade da cana-de-açúcar em relação a clima e solos da região noroeste do Estado de São Paulo. Revista Brasileira de Ciência do Solo 23, 627–634.
Produtividade da cana-de-açúcar em relação a clima e solos da região noroeste do Estado de São Paulo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFylsLY%3D&md5=fd18123dde943b5e14db3b88871e5431CAS |

Evans H (1938) Studies on the absorbing surface of sugar-cane root systems I. Method of study with some preliminary results. Annals of Botany 2, 159–182.

Evensen CI, Muchow RC, ElSwaify A, Osgood RV (1997) Yield accumulation in irrigated sugarcane. 1. Effect of crop age and cultivar. Agronomy Journal 89, 638–646.
Yield accumulation in irrigated sugarcane. 1. Effect of crop age and cultivar.Crossref | GoogleScholarGoogle Scholar |

Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319, 1235–1238.
Land clearing and the biofuel carbon debt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVSksLs%3D&md5=ddf783f5809be94c60610ddfa2bb7661CAS |

Faroni CE (2004) Sistema radicular de cana-de-açúcar e identificação de raízes metabolicamente ativas. Dissertação Mestrado, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba.

Faroni CE, Trivelin PCO (2006) Quantificação de raízes metabolicamente ativas de cana-de-açúcar. Pesquisa Agropecuária Brasileira 41, 1007–1013.
Quantificação de raízes metabolicamente ativas de cana-de-açúcar.Crossref | GoogleScholarGoogle Scholar |

Fernandes J (1979) ‘A subsolagem no controle da compactacao do solo na cana-soca (Saccharum spp.) variedade CB 41–76 e seus efeitos no rendimento agricola e no sistema radicular.’ (Escola Superior de Agricultura Luiz de Queiroz: Piracicaba)

Galdos M, Cerri C, Cerri C (2009) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153, 347–352.
Soil carbon stocks under burned and unburned sugarcane in Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gnt7rM&md5=f8e6417c27483360a0785f7f59e2ce6aCAS |

Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 3, 034001.
Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology.Crossref | GoogleScholarGoogle Scholar |

Graham M, Haynes R, Meyer J (2002) Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long‐term sugarcane experiment in South Africa. European Journal of Soil Science 53, 589–598.
Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long‐term sugarcane experiment in South Africa.Crossref | GoogleScholarGoogle Scholar |

Hartemink AE (2008) Sugarcane for bioethanol: soil and environmental issues. Advances in Agronomy 99, 125–182.
Sugarcane for bioethanol: soil and environmental issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslWjsr4%3D&md5=cfd01e2c44d70b2e8a1cb9cd3c384cecCAS |

Humbert RP, Gallardo AG (1974) ‘El cultivo de la caña de azúcar.’ (Centro Regional de Ayuda Técnica, Agencia para el Desarrollo Internacional: Mexico)

Inforzato R, Alvarez R (1957) Distribuição do sistema radicular da cana-de-açúcar var. Co 290, em solo tipo Terra-Roxa-Legítima. Bragantia 16, 1–14.

Jangpromma N, Thammasirirak S, Jaisil P, Songsri P (2012) Effects of drought and recovery from drought stress on aboveground and root growth, and water use efficiency in sugarcane (Saccharum officinarum L.). Australian Journal of Crop Science 6, 1298–1304.

Kravchenko AN, Bullock DG (2000) Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal 92, 75–83.
Correlation of corn and soybean grain yield with topography and soil properties.Crossref | GoogleScholarGoogle Scholar |

Lal R, Kimble JM (1997) Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems 49, 243–253.
Conservation tillage for carbon sequestration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslCqtrk%3D&md5=112c71a018f4f27e576333f6cc99be0fCAS |

Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences of the United States of America 107, 3388
Indirect land-use changes can overcome carbon savings from biofuels in Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFymtb0%3D&md5=a3e4a22c5f9c0402602ae1d2b0bfce4eCAS |

Leite JM (2010) Acúmulo de fitomassa e de macronutrientes da cana-de-açúcar relacionados ao uso de fontes de nitrogênio. MSc Thesis, Universidade de Sao Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, Brazil.

Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono H, de Souza CL, de Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theoretical and Applied Genetics 104, 30–38.
Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFyjt7c%3D&md5=164d38d61b3878aa2a79439197889381CAS |

Luca Ed, Feller C, Cerri CC, Barthès B, Chaplot V, Campos DC, Manechini C (2008) Avaliação de atributos físicos e estoques de carbono e nitrogênio em solos com queima e sem queima de canavial. Revista Brasileira de Ciência do Solo 32, 789–800.
Avaliação de atributos físicos e estoques de carbono e nitrogênio em solos com queima e sem queima de canavial.Crossref | GoogleScholarGoogle Scholar |

Macedo IC, Leal M, Da Silva J (2004) ‘Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil.’ (Government of the State of São Paulo)

Macedo IC, Seabra JEA, Silva J (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy 32, 582–595.
Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1OhtLw%3D&md5=5088029538a32af3f01f22a219c7e6fcCAS |

Manzatto CV, Assad ED, Bacca JFM, Zaroni MJ, Pereira SEM (2009) Zoneamento agroecológico da cana-de-açúcar. (Embrapa Solos: Rio de Janeiro)

Meier EA, Thorburn PJ, Wegener MK, Basford KE (2006) The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland. Nutrient Cycling in Agroecosystems 75, 101–114.
The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot12jsb8%3D&md5=8e733f7ccec1a9b67445d9f5bd339c80CAS |

Mello FFC, Cerri CEP, Davies CA, Holbrook NM, Paustian K, Maia SMF, Galdos MV, Bernoux M, Cerri CC (2014) Payback time for soil carbon and sugar-cane ethanol. Nature Climate Change 4, 605–609.
Payback time for soil carbon and sugar-cane ethanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVams7s%3D&md5=add3d13986aa533889f328b969498facCAS |

Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In ‘Methods of soil analysis. Part 3. Chemical methods’ (Ed. JM Bigham) pp. 961–1010. (Soil Science Society of America: Madison, WI)

Oliveira ECA, Oliveira RI, Andrade BMT, Freire FJ, Lira JÚ, Nior MA, Machado PR (2010) Crescimento e acúmulo de matéria seca em variedades de cana-de-açúcar cultivadas sob irrigação plena. Revista Brasileira de Engenharia Agrícola e Ambiental 14, 951–960.
Crescimento e acúmulo de matéria seca em variedades de cana-de-açúcar cultivadas sob irrigação plena.Crossref | GoogleScholarGoogle Scholar |

Otto R, Franco HCJ, Faroni CE, Vitti AC, Trivelin PCO (2009) Fitomassa de raízes e da parte aérea da cana-de-açúcar relacionada à adubação nitrogenada de plantio. Pesquisa Agropecuária Brasileira 44, 398–405.
Fitomassa de raízes e da parte aérea da cana-de-açúcar relacionada à adubação nitrogenada de plantio.Crossref | GoogleScholarGoogle Scholar |

Otto R, Franco HCJ, Faroni CE, Vitti AC, de Oliveira ECA, Sermarini RA, Trivelin PCO (2014) The role of nitrogen fertilizers in sugarcane root biomass under field conditions. Agricultural Sciences 5, 1527
The role of nitrogen fertilizers in sugarcane root biomass under field conditions.Crossref | GoogleScholarGoogle Scholar |

Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In ‘Soil organic matter in temperate agroecosystems: long-term experiments in North America’. (Eds EA Paul, K Paustian, ET Elliot, CV Cole) pp. 15–49. (CRC Press: Boca Raton, FL)

Pippo WA, Luengo CA (2013) Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. International Journal of Energy and Environmental Engineering 4, 10.
Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility.Crossref | GoogleScholarGoogle Scholar |

Razafimbelo T, Barthes B, Larre-Larrouy MC, De Luca EF, Laurent JY, Cerri CC, Feller C (2006) Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil. Agriculture, Ecosystems & Environment 115, 285–289.
Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Robertson FA, Thorburn PJ (2007) Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Australian Journal of Soil Research 45, 13–23.
Management of sugarcane harvest residues: consequences for soil carbon and nitrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yqsb8%3D&md5=e0a842c9c081b5cfc7c69e44b0d480ebCAS |

Robertson MJ, Wood AW, Muchow RC (1996) Growth of sugarcane under high input conditions in tropical Australia. 1. Radiation use, biomass accumulation and partitioning. Field Crops Research 48, 11–25.
Growth of sugarcane under high input conditions in tropical Australia. 1. Radiation use, biomass accumulation and partitioning.Crossref | GoogleScholarGoogle Scholar |

Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. Forest Ecology and Management 205, 199–214.
Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo.Crossref | GoogleScholarGoogle Scholar |

Salata JC, Armene JC, DemattÊ JLI (1987) Influência do tipo de sulcador no desenvolvimento do sistema radicular e produtividade da cana-de-açúcar. STAB 5, 12–18.

Sao Paulo State (2002) Dispõe sobre eliminação gradativa da queima da palha da cana-de-açúcar. Lei N°. 11.241, de 19 de setembro de 2002. Available at www.al.sp.gov.br/legislacao/norma.do?id=217 [accessed 6 May 2014].

Silva-Olaya AM, Cerri CEP, La Scala N Silva-Olaya AM, Cerri CEP, La Scala N (2013) Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environmental Research Letters 8, 015014.

Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils – effects of no-tillage. Agronomie 22, 755–776.

Smith J (1998) Studies on the relation between root growth and shoot growth of sugarcane. MSc thesis. James Cook University, Townsville.

Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crops Research 92, 169–183.
Growth and function of the sugarcane root system.Crossref | GoogleScholarGoogle Scholar |

Soil Survey Staff (1999) ‘Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys.’ (United States Department of Agriculture)

Souza ZMd, Cerri DGP, Magalhães PSG, Siqueira DS (2010) Spatial variability of soil attributes and sugarcane yield in relation to topographic location. Revista Brasileira de Engenharia Agrícola e Ambiental 14, 1250–1256.
Spatial variability of soil attributes and sugarcane yield in relation to topographic location.Crossref | GoogleScholarGoogle Scholar |

Suman A, Singh KP, Singh P, Yadav RL (2009) Carbon input, loss and storage in sub-tropical Indian Inceptisol under multi-ratooning sugarcane. Soil & Tillage Research 104, 221–226.
Carbon input, loss and storage in sub-tropical Indian Inceptisol under multi-ratooning sugarcane.Crossref | GoogleScholarGoogle Scholar |

Thorburn PJ, Probert ME, Lisson S, Wood AW, Keating BA (1999) Impacts of trash retention on soil nitrogen and water: an example from the Australian sugarcane industry. Proceedings South African Sugar Technologist Association 73, 75–79.

Thorburn PJ, Meier EA, Collins K, Robertson FA (2012) Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil & Tillage Research 120, 99–111.
Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific.Crossref | GoogleScholarGoogle Scholar |

Tominaga TT, Cassaro FAM, Bacchi OOS, Reichardt K, Oliveira JCM, Timm LC (2002) Variability of soil water content and bulk density in a sugarcane field. Australian Journal of Soil Research 40, 605–614.
Variability of soil water content and bulk density in a sugarcane field.Crossref | GoogleScholarGoogle Scholar |

Vallis I, Parton W, Keating B, Wood A (1996) Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane. Soil & Tillage Research 38, 115–132.
Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane.Crossref | GoogleScholarGoogle Scholar |

Vasconcelos ACM (2000) As raízes da cana-de-açúcar. Sociedade dos Técnicos Açúcareiros e Alcooleiros do Brasil (STAB) 18, 24–26.

Vasconcelos ACM, Garcia JC (2005) Desenvolvimento radicular da cana-de-açúcar. Cana-de-açúcar: Ambientes de produção. Informações Agronômicas no. 110. Instituto Agronomico de Campinas (IAC).

Walter A, Dolzan P, Quilodrán O, Garcia J, Da Silva C, Piacente F, Segerstedt A (2008) A sustainability analysis of the Brazilian ethanol. UNICAMP, Campinas. Available at www.unica.com.br/download.asp [accessed by 10 April 2014].