Optimising the extraction of amorphous silica by NaOH from soils of temperate-humid climate
Anna Georgiadis A D , Daniela Sauer A B , Jörn Breuer C , Ludger Herrmann A , Thilo Rennert A and Karl Stahr AA Institute of Soil Science and Land Evaluation, Soil Chemistry and Pedology Section, University of Hohenheim, Emil-Wolff-Str. 27, D-70593 Stuttgart, Germany.
B Institute of Geography, Dresden University of Technology, Helmholtz-Str. 10, D-01069 Dresden, Germany.
C Center for Agricultural Technology Augustenberg, Section 12 Agroecology, Neßlerstr. 23-31, D-76227 Karlsruhe, Germany.
D Corresponding author. Email: Anna.Georgiadis@uni-hohenheim.de
Soil Research 53(4) 392-400 https://doi.org/10.1071/SR14171
Submitted: 6 July 2014 Accepted: 10 February 2015 Published: 30 June 2015
Abstract
This study focuses on optimising amorphous silica extraction from soils by using NaOH. Based on the results of this test series, a method for quantifying amorphous silica in soils from temperate-humid climate is proposed. All tests were carried out on materials of known composition (well-defined samples of feldspar, clay minerals, bio-opal, silica gel, and mixtures of these components) and on soil samples, to determine the optimum set of conditions, in terms of solid : solution ratio, temperature and extraction time, for dissolving amorphous silica without considerably attacking other solid silicon compounds.
A solution of 0.2 m NaOH almost completely extracted amorphous silica, and when applied at room temperature and a solid : solution ratio of 1 : 400, only slightly broke down crystalline Si compounds. The predictable and reproducible underestimation was considered more acceptable than the variable partial dissolution of silicates that occurs during extraction at higher temperatures. We therefore recommend using this method on soils from temperate-humid climate to estimate the amorphous Si fraction.
Additional keywords: alkaline extraction, silica dissolution, bio-opal.
References
Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering problems. Geochimica et Cosmochimica Acta 61, 677–682.| Plant impact on the biogeochemical cycle of silicon and related weathering problems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFaltbw%3D&md5=b5256760b4ef964480e39f3cda8188afCAS |
Arnseth RW, Turner RS (1988) Sequential extraction of iron, manganese, aluminum, and silicon in soils from two contrasting watersheds. Soil Science Society of America Journal 52, 1801–1807.
| Sequential extraction of iron, manganese, aluminum, and silicon in soils from two contrasting watersheds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlyqurs%3D&md5=73f5e4d4288f025213a14b3b54674f07CAS |
Bartoli F (1985) Crystallochemistry and surface properties of biogenic opal. Journal of Soil Science 36, 335–350.
| Crystallochemistry and surface properties of biogenic opal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFCjtro%3D&md5=95d3381d7308190bbb0ff50ccc9c1790CAS |
Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Science Society of America Journal 44, 873–878.
| Dissolution of biogenic opal as a function of its physical and chemical properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtlOkt7g%3D&md5=53ef43716546939307f455dd3cec88a8CAS |
Biermans V, Baert L (1977) Selective extraction of the amorphous Al, Fe and Si oxides using an Alkaline-Tiron solution. Clay Minerals 12, 127–135.
| Selective extraction of the amorphous Al, Fe and Si oxides using an Alkaline-Tiron solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlt1Srsr8%3D&md5=c6434e6940d8ba7990c8841fed8cea9dCAS |
Borchardt G (1989) Smectites. In ‘Minerals in soil environments’. 2nd edn (Eds JB Dixon, SB Weed) pp. 675–727. (Soil Science Society of America: Madison, WI, USA)
Breuer J, Herrmann L (1999) Eignung der extraktion mit natriumbikarbonat für die charakterisierung von bodenbildenden prozessen. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 91, 1375–1378.
Chadwick OA, Hendricks DM, Nettleton WD (1989) Silicification of Holocene soils in Northern Monitor Valley, Nevada. Soil Science Society of America Journal 53, 158–164.
| Silicification of Holocene soils in Northern Monitor Valley, Nevada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvFKltLo%3D&md5=706612eff6e9fe18fd36d7ec890cf128CAS |
Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8, 2281–2293.
| Anthropogenic impact on amorphous silica pools in temperate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Wgtr%2FL&md5=a22eb613cd931ab503e2b05156f452f7CAS |
Conley DJ (1998) An interlaboratory comparison for the measurement of biogenic silica in sediments. Marine Chemistry 63, 39–48.
| An interlaboratory comparison for the measurement of biogenic silica in sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKitb8%3D&md5=0f1e756e04a219a7f862115092dd5317CAS |
Conley DJ, Schelske CL (2001) Biogenic silica. In ‘Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, Bd. 3’. (Eds JP Smol, HJB Birks, WM Last) pp. 281–293. (Kluwer Academic Publishers: Dordrecht, The Netherlands)
Conley DJ, Sommer M, Meunier J-D, Kaczorek D, Saccone L (2006) Silicon in the terrestrial biogeosphere. In ‘The silicon cycle: Human perturbations and impacts on aquatic systems’. SCOPE 66. (Eds V Ittekot, D Unger, C Humborg, NT An) pp. 13–28. (Island Press: Washington, DC)
Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant and Soil 342, 369–378.
| Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKksLg%3D&md5=e866ee56c4cd1c87f3bf73ec3eac4fb5CAS |
DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45, 1715–1732.
| The supply and accumulation of silica in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XptFagsw%3D%3D&md5=2a37c92d9b87d9f7a7d1e5531c44e35eCAS |
Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433, 728–731.
| Biological control of terrestrial silica cycling and export fluxes to watersheds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleqsLo%3D&md5=49964b715aee5f881773e18857c9d656CAS | 15716949PubMed |
Epstein E (2001) Silicon in plants: facts vs. concepts. In ‘Silicon in agriculture’. (Eds LE Datnoff, GH Snyder, GH Korndörfer) pp. 1–15. (Elsevier Science B.V.: Amsterdam)
FAO Guidelines for Soil Description (2006) ‘Guidelines for soil description.’ 4th edn (FAO: Rome)
Follett EAC, Mchardy WJ, Mitchell BD, Smith BFL (1965) Chemical dissolution techniques in the study of soil clays: Parts I and II. Clay Minerals 6, 23–34.
| Chemical dissolution techniques in the study of soil clays: Parts I and II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XkvVWisrs%3D&md5=5ee430578ae8d43f68bfb69d11d9371cCAS |
Foster MD (1953) Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites. Geochimica et Cosmochimica Acta 3, 143–154.
| Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXktVyquw%3D%3D&md5=3eb961b227ce72eaba9b72a97ff5a54bCAS |
Gebhardt H (1976) Bildung und Eigenschaften amorpher Tonbestandteile in Böden des gemäßigt-humiden Klimabereichs. Zeitschrift für Pflanzenernährung und Bodenkunde 139, 73–89.
| Bildung und Eigenschaften amorpher Tonbestandteile in Böden des gemäßigt-humiden Klimabereichs.Crossref | GoogleScholarGoogle Scholar |
Georgiadis A (2011) Entwicklung einer methode zur fraktionierten Si-bestimmung in böden des feucht-gemäßigten klimas. Hohenheimer Bodenkundliche Hefte, 100. PhD Dissertation, University of Hohenheim, Germany.
Georgiadis A, Sauer D, Herrmann L, Breuer J, Zarei M, Stahr K (2013) Development of a method for sequential Si extraction from soils. Geoderma 209–210, 251–261.
| Development of a method for sequential Si extraction from soils.Crossref | GoogleScholarGoogle Scholar |
Georgiadis A, Sauer D, Herrmann L, Breuer J, Zarei M, Stahr K (2014) Testing a new method for sequential Si-extraction on soils of a temperate-humid climate. Soil Research 52, 645–657.
| Testing a new method for sequential Si-extraction on soils of a temperate-humid climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslChtL%2FO&md5=471b0f45f34748e7fe4672813de157e6CAS |
Gérard F, Boudot J-P, Ranger J (2001) Consideration on the occurrence of the Al13 polycation in natural soil solutions and surface waters. Applied Geochemistry 16, 513–529.
| Consideration on the occurrence of the Al13 polycation in natural soil solutions and surface waters.Crossref | GoogleScholarGoogle Scholar |
Golyeva AA (1999) The application of phytolith analysis for solving problems of soil genesis and evolution. Eurasian Soil Science 32, 884–891.
Guntzer F, Keller C, Meunier JD (2010) Determination of the silicon concentration in plant material using Tiron extraction. New Phytologist 188, 902–906.
| Determination of the silicon concentration in plant material using Tiron extraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKnurzL&md5=fa7cd8640ca62f91a1f583e550ac1a6bCAS | 20723075PubMed |
Hashimoto I, Jackson ML (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. In ‘Proceedings of the 7th National Conference on Clays and Clay Minerals’. pp. 102–113. (Pergamon Press: Washington, DC)
Herbauts J, Dehalu FA, Gruber W (1994) Quantitative determination of plant opal content in soils, using a combined method of heavy liquid separation and alkali dissolution. European Journal of Soil Science 45, 379–385.
| Quantitative determination of plant opal content in soils, using a combined method of heavy liquid separation and alkali dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlanu7Y%3D&md5=2508df05db722bb23515ea65f53661a4CAS |
Iler RK (1979) ‘The chemistry of silica.’ (Wiley-Interscience: New York)
Kamatani A, Oku O (2000) Measuring biogenic silica in marine sediments. Marine Chemistry 68, 219–229.
| Measuring biogenic silica in marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVKhug%3D%3D&md5=364dea88dfabdd1cf7f55893624eaf58CAS |
Kodama H, Ross GJ (1991) Tiron dissolution method used to remove and characterize inorganic components in soils. Soil Science Society of America Journal 55, 1180–1187.
| Tiron dissolution method used to remove and characterize inorganic components in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVKrur4%3D&md5=b789661c158d874b97cb8134534c36d8CAS |
Koning E, Epping E, Van Raaphorst W (2002) Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquatic Geochemistry 8, 37–67.
| Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xntlamu7g%3D&md5=17f737865b64b050b48af49f338a09cdCAS |
Korndörfer GH, Lepsch I (2001) Effect of silicon on plant growth and crop yield. In ‘Silicon in agriculture’. (Eds LE Datnoff, GH Snyder, GH Korndörfer) pp. 133–147. (Elsevier Science B.V.: Amsterdam)
Krausse GL, Schelske CL, Davis CO (1983) Comparison of three wet-alkaline methods of digestion of biogenic silica in water. Freshwater Biology 13, 73–81.
| Comparison of three wet-alkaline methods of digestion of biogenic silica in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1Klt78%3D&md5=9523b9a5c79338ab287a6c44c7150cd5CAS |
Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends in Plant Science 11, 392–397.
| Silicon uptake and accumulation in higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1Kjurg%3D&md5=77ad35256d2a49f064f4f1363bb67b23CAS | 16839801PubMed |
Matichenkov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In ‘Silicon in agriculture’. (Eds LE Datnoff, GH Snyder, GH Korndörfer) pp. 209–219. (Elsevier Science B.V.: Amsterdam)
McKeague JA, Cline MG (1963) Silica in soil solutions: I. The form and concentration of dissolved silica in aqueous extracts of some soils. Canadian Journal of Soil Science 43, 70–82.
| Silica in soil solutions: I. The form and concentration of dissolved silica in aqueous extracts of some soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXntFGhsQ%3D%3D&md5=584f4d2477050dcb44a01cc179638819CAS |
Meunier JD, Keller C, Guntzer F, Riotte J, Braun JJ, Anupama K (2014) Assessment of the 1% Na2CO3 technique to quantify the phytolith pool. Geoderma 216, 30–35.
| Assessment of the 1% Na2CO3 technique to quantify the phytolith pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGjtrvF&md5=dd489fcae62894c454f65fbfe86e6d18CAS |
Meyer JH, Keeping MG (2000) Review of research into the role of silicon for sugarcane production. Proceedings of the South African Sugar Technologists Association 74, 29–40.
Müller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Research Part I: Oceanographic Research Papers 40, 425–444.
Rafi MM, Epstein E (1999) Silicon absorption by wheat (Triticum aestivum L.). Plant and Soil 211, 223–230.
| Silicon absorption by wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlKisLk%3D&md5=a47bdf23c76d37d38697c88e3873830dCAS |
Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. European Journal of Soil Science 58, 1446–1459.
| Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVWkuw%3D%3D&md5=08a7d6206f7e8efbd24776cd05912586CAS |
Saccone L, Conley DJ, Likens GE, Bailey SW, Buso DC, Johnson CE (2008) Factors that control the range and variability of amorphous silica in soils in the Hubbard Brook Experimental Forest. Soil Science Society of America Journal 72, 1637–1644.
| Factors that control the range and variability of amorphous silica in soils in the Hubbard Brook Experimental Forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjs7vP&md5=e6fe0e9fc65676bc7e58766293a91c93CAS |
Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80, 89–108.
| Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOnsbY%3D&md5=a7bd12f56c64a22a0f9c026ab849eaf0CAS |
Sauer D, Stein C, Glatzel S, Kühn J, Zarei M, Stahr K (2015) Duricrusts in soils of the Alentejo (southern Portugal)—types, distribution, genesis and time of their formation. Journal of Soils and Sediments 15, 1437–1453.
| Duricrusts in soils of the Alentejo (southern Portugal)—types, distribution, genesis and time of their formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1Cltr4%3D&md5=c7db7e49684a57585ea326ce96075afeCAS |
Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: A review. Journal of Plant Nutrition 22, 1853–1903.
| Silicon nutrition and sugarcane production: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlOqsrs%3D&md5=ec1826bb0ef1bfae44718c36c20db55dCAS |
Schindler PW, Furst B, Dick R, Wolf PO (1976) Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+. Journal of Colloid and Interface Science 55, 469–475.
| Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksFaitbc%3D&md5=42b831304e42fa6f5f0609560c7202f0CAS |
Schwertmann U (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung und Bodenkunde 105, 194–202.
| Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXotlCj&md5=86686fe6e0fbb297cdae435828f16439CAS |
Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Si pools and fluxes in soils—A review. Journal of Plant Nutrition and Soil Science 169, 310–329.
| Si pools and fluxes in soils—A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlymsro%3D&md5=3e6af2f5b1108bbbcc8f11c136b4ee4eCAS |
Tamm O (1932) Über die oxalatmethode in der chemischen bodenanalyse. Meddelanden från Statens skogsförsöksanstalt 27, 1–20.
Tavakkoli E, Lyons G, English P, Chris N, Guppy CN (2011) Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation. Journal of Plant Nutrition and Soil Science 174, 437–446.
| Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslaitbg%3D&md5=494963b731809a122ba9372964bd17b7CAS |
Wada K, Greenland DJ (1970) Selective dissolution and differential infrared spectroscopy for characterization of amorphous constituents in soil clays. Clay Minerals 8, 241–254.
| Selective dissolution and differential infrared spectroscopy for characterization of amorphous constituents in soil clays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltFWqs7c%3D&md5=adbc34ebdd7009db5857e9dd9a3e0f4aCAS |
Wedepohl KH (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–1232.
| The composition of the continental crust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVGlsrw%3D&md5=72ccc4cd28c7e0b47e56639744a54cc6CAS |