Testing a new method for sequential silicon extraction on soils of a temperate–humid climate
Anna Georgiadis A D , Daniela Sauer B , Ludger Herrmann A , Jörn Breuer C , Mehdi Zarei A and Karl Stahr AA Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Str. 27, D-70599 Stuttgart, Germany.
B Institute of Geography, Dresden University of Technology, Helmholtz-Str. 10, D-01069 Dresden, Germany.
C Agricultural Technology Centre Augustenberg, Section 12 Agroecology, Neßlerstr. 23-31, D-76227 Karlsruhe, Germany.
D Corresponding author. Email: Anna.Georgiadis@uni-hohenheim.de
Soil Research 52(7) 645-657 https://doi.org/10.1071/SR14016
Submitted: 20 January 2014 Accepted: 29 May 2014 Published: 10 October 2014
Abstract
The importance of silicon (Si) compounds in agriculture and geochemical cycles has received increasing attention over the last decade; however, quantitative data on non-crystalline pedogenic Si phases in soils are still rare. Recently, the authors developed a method for sequential Si extraction from soils, in order to improve the quantification of different Si compounds in soils. The method has been tested on samples of known composition. Here, the method is applied for the first time to complete soil profiles. Six different soil types from south-west Germany that have developed since the end of the last glacial period were selected. Most of the Si in these soils was bound in primary and secondary silicates. In mineral soil horizons, the second-highest proportion of Si was in precipitates of amorphous silica (minerogenic amorphous silica), whereas in some O horizons, the second-most important Si fraction was in biogenic amorphous silica. Topsoil horizons and clayey subsoil horizons of a Luvisol and a Stagnosol especially accumulate amorphous silica. Silicon from bio-opal contributed up to 14% to the total Si in Oa horizons of the studied soils. The smallest amounts of Si were found in the mobile and adsorbed Si fractions. Some methodological limitations are identified and discussed; however, the new sequential method of Si extraction enabled separation of different Si fractions in typical soils of a temperate–humid climate.
Additional keywords: short-range order silicates, oxalate-extractable Si, clay minerals.
References
Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering problems. Geochimica et Cosmochimica Acta 61, 677–682.| Plant impact on the biogeochemical cycle of silicon and related weathering problems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFaltbw%3D&md5=8a796333cb0e8cc0854ae291b5dfadd5CAS |
Bartoli F (1985) Crystallochemistry and surface properties of biogenic opal. Journal of Soil Science 36, 335–350.
| Crystallochemistry and surface properties of biogenic opal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFCjtro%3D&md5=722191784bbe12f149c4b921ceccf810CAS |
Beckwith RS, Reeve R (1964) Studies on soluble silica in soils. II. The release of monosilicic acid from soils. Australian Journal of Soil Research 2, 33–45.
| Studies on soluble silica in soils. II. The release of monosilicic acid from soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXhsVKitQ%3D%3D&md5=f75a25a6595fbb333c70458c1ec94abdCAS |
Bleich KE, Clemens G, Lorenz G (1990) Soil formation, erosion and N-dynamics in the loess landscapes of the Middle Neckar and Kraichgau area, Baden-Württemberg, 139–179. In ‘Gedächtniskolloquium, Ernst Schlichting’. Hohenheimer Arbeiten. (Eds K Stahr, H-P Blume, R Jahn) pp. 241–256. (Ulmer Verlag: Stuttgart, Germany)
Breuer J (1994) Hartsetzende Böden Nordkameruns. PhD Dissertation, Technical University of München, Germany.
Conley DJ, Sommer M, Meunier J-D, Kaczorek D, Saccone L (2006) Silicon in the terrestrial biogeosphere. In ‘The silicon cycle: Human perturbations and impacts on aquatic systems’. (Eds V Ittekot, D Unger, C Humborg, NT An) pp. 13–28. (SCOPE 66, Island Press: Washington, DC)
Cornelis J-T, Ranger J, Iserentant A, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97, 231–245.
| Tree species impact the terrestrial cycle of silicon through various uptakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslKls7c%3D&md5=76ddc8bad51cf95a700ab26903f4c191CAS |
Dahlgren RA, Ugolini FC (1989) Formation and stability of imogolite in a tephritic Spodosol, Cascade Range, Washington, USA. Geochimica et Cosmochimica Acta 53, 1897–1904.
| Formation and stability of imogolite in a tephritic Spodosol, Cascade Range, Washington, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVSjtQ%3D%3D&md5=61008675633ef28efe437c66ebd54f5dCAS |
Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433, 728–731.
| Biological control of terrestrial silica cycling and export fluxes to watersheds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleqsLo%3D&md5=a915f34221fb8afef5e3a98a3f51667aCAS | 15716949PubMed |
Ehmann M (1989) ‘Auswirkungen atmogener Stoffeinträge auf Boden- und Grundwässer sowie Stoffbilanzierungen in drei bewaldeten Einzugsgebieten im Oberen Buntsandstein (Nordschwarzwald).’ Tübinger Geowissenschaftliche Arbeiten. Reihe C, Heft 3: Tübingen. (Institut und Museum für Geologie und Paläontologie: Tübingen, Germany)
Elsass F, Dubroeucq D, Thiry M (2000) Diagenesis of silica minerals from clay minerals in volcanic soils of Mexico. Clay Minerals 35, 477–489.
| Diagenesis of silica minerals from clay minerals in volcanic soils of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1ajt7s%3D&md5=6e2df8e3333f768aa622e81d7d2fcf12CAS |
FAO Guidelines for Soil Description (2006) ‘Guidelines for soil description.’ 4th edn (FAO: Rome) Available at: ftp://ftp.fao.org/agl/agll/docs/guidel_soil_descr.pdf
Farmer VC, Russell JD, Berrow ML (1980) Imogolite and proto-imogolite allophane in spodic horizons: evidence for amobile aluminum silicate complex in podzol formation. Journal of Soil Science 31, 673–684.
| Imogolite and proto-imogolite allophane in spodic horizons: evidence for amobile aluminum silicate complex in podzol formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmvV2rsQ%3D%3D&md5=b801d8d6c689bbbfc637aeba71bb99adCAS |
Fiedler S, Jungkunst HPF, Jahn R, Kleber M, Sommer M, Stahr K (2002) Linking soil classification and soil dynamics – pedological and ecological perspectives. Journal of Plant Nutrition and Soil Science 165, 517–529.
| Linking soil classification and soil dynamics – pedological and ecological perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVKgurk%3D&md5=f5c8983a200dd6114f737a8800d33681CAS |
Fishkis O, Ingwersen J, Lamers M, Denysenko D, Streck T (2010) Phytolith transport in soil: A field study using fluorescent labelling. Geoderma 157, 27–36.
| Phytolith transport in soil: A field study using fluorescent labelling.Crossref | GoogleScholarGoogle Scholar |
Foster MD (1953) Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites. Geochimica et Cosmochimica Acta 3, 143–154.
| Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXktVyquw%3D%3D&md5=aecb8fb52fa05ffdd6a6b241c39fa2ceCAS |
Gebhardt H (1976) Bildung und Eigenschaften amorpher Tonbestandteile in Böden des gemäßigt-humiden Klimabereichs. Zeitschrift für Pflanzenernährung und Bodenkunde 139, 73–89.
| Bildung und Eigenschaften amorpher Tonbestandteile in Böden des gemäßigt-humiden Klimabereichs.Crossref | GoogleScholarGoogle Scholar |
Geis JW (1973) Biogenic silica in selected species of deciduous angiosperms. Soil Science 116, 113–130.
| Biogenic silica in selected species of deciduous angiosperms.Crossref | GoogleScholarGoogle Scholar |
Georgiadis A (2011) Entwicklung einer Methode zur fraktionierten Si-Bestimmung in Böden des feucht-gemäßigten Klimas. Hohenheimer Bodenkundliche Hefte, 100. PhD Dissertation, University of Hohenheim Germany.
Georgiadis A, Sauer D, Herrmann L, Breuer J, Zarei M, Stahr K (2013) Development of a method for sequential Si extraction from soils. Geoderma 209–210, 251–261.
| Development of a method for sequential Si extraction from soils.Crossref | GoogleScholarGoogle Scholar |
Golyeva AA (1999) The application of phytolith analysis for solving problems of soil genesis and evolution. Eurasian Soil Science 32, 884–891.
Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Annals of Botany 96, 1027–1046.
| Phylogenetic variation in the silicon composition of plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsL3F&md5=c2308cfce85162e0c48a156ada8d12efCAS | 16176944PubMed |
Klein RL, Geis JW (1978) Biogenic silica in the pinaceae. Soil Science 126, 145–156.
| Biogenic silica in the pinaceae.Crossref | GoogleScholarGoogle Scholar |
Kodama H, Ross GJ (1991) Tiron dissolution method used to remove and characterize inorganic components in soils. Soil Science Society of America Journal 55, 1180–1187.
| Tiron dissolution method used to remove and characterize inorganic components in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVKrur4%3D&md5=399a006577817be45bb03a15682e66a4CAS |
Langford-Smith T (1978) ‘Silcrete in Australia.’ (University of New England: Armadale, NSW)
Lundström US, Van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94, 91–107.
| The podzolization process. A review.Crossref | GoogleScholarGoogle Scholar |
Marschner H (1995) ‘Mineral nutrition of higher plants.’ 2nd edn (Academic Press: London)
McKeague JA, Cline MG (1963a) Silica in soil solutions I. The form and concentration of dissolved silica in aqueous extracts of some soils. Canadian Journal of Soil Science 43, 70–82.
| Silica in soil solutions I. The form and concentration of dissolved silica in aqueous extracts of some soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXntFGhsQ%3D%3D&md5=385d83d1db2f196422e183fa54b2bc75CAS |
McKeague JA, Cline MG (1963b) Silica in soil solutions. II. The adsorption of monosilicic acid by soil and by other substances. Canadian Journal of Soil Science 43, 83–96.
| Silica in soil solutions. II. The adsorption of monosilicic acid by soil and by other substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXntFGhtg%3D%3D&md5=69cfe79d4fddeae279c3a0a78dbb0075CAS |
Meyer R, Pena Dos Reis RB (1985) Paleosols and alunite silcretes in continental Cenozoic series of western Portugal. Journal of Sedimentary Petrology 55, 76–85.
Miehlich G (1991) ‘Chronosequences of volcanic ash soils.’ Hamburger Bodenkundliche Arbeiten, 15. (The University of Hamburg: Hamburg, Germany)
Milnes AR, Twidale CR (1983) An overview of silicification in cainozoic landscapes of arid central and southern Ausralia. Australian Journal of Soil Research 21, 387–410.
| An overview of silicification in cainozoic landscapes of arid central and southern Ausralia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVKqtbg%3D&md5=f0e037047c5c2e9854d44327824dbb5cCAS |
Milnes AR, Wright MJ, Thiry M (1991) Silica accumulations in saprolites and soils in South Australia. In ‘Occurrence, characteristics and genesis of carbonate, gypsum, silica accumulations in soils’. Special publication 26. (Ed. WD Nettleton) pp. 121–149. (Soil Science Society of America: Madison, WI, USA)
Morris RC, Fletcher AB (1987) Increased solubility of quartz following ferrous–ferric iron reactions. Nature 330, 558–561.
| Increased solubility of quartz following ferrous–ferric iron reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFagsQ%3D%3D&md5=b707436e48692efa77602ef3a6ec77e2CAS |
Pfisterer U (1991) ‘Genese, Ökologie und Soziologie einer Bodengesellschaft aus Ultrabasit und Bodenformen assoziierter Gesteine des süd-ost-brasilianischen Regenwaldes.’ Schriftenreihe des Instituts für Pflanzenernährung und Bodenkunde, Universität Kiel, 14. (University of Kiel: Kiel, Germany)
Rodas M, Luque FJ, Mas R, Garzon G (1994) Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo basins, central Spain. Clay Minerals 29, 273–285.
| Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo basins, central Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1Wjtbc%3D&md5=18f534f4b2d5a9b1712e225b4af5a3eeCAS |
Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. European Journal of Soil Science 58, 1446–1459.
| Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVWkuw%3D%3D&md5=163c2d417caf866194ef4a7c990deb91CAS |
Saccone L, Conley DJ, Likens GE, Bailey SW, Buso DC, Johnson CE (2008) Factors that control the range and variability of amorphous silica in soils in the Hubbard Brook Experimental Forest. Soil Science Society of America Journal 72, 1637–1644.
| Factors that control the range and variability of amorphous silica in soils in the Hubbard Brook Experimental Forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjs7vP&md5=be85e77da3950d686af18cdbaeb97bf2CAS |
Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80, 89–108.
| Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOnsbY%3D&md5=0dd68be04a8a81bf7ab34aaf35fc8f09CAS |
Schachtschabel P, Heinemann CG (1967) Wasserlösliche kieselsäure in lößböden. Zeitschrift für Pflanzenernährung und Bodenkunde 118, 22–35.
| Wasserlösliche kieselsäure in lößböden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXotVGisQ%3D%3D&md5=dc35f528fb3a7066c0c9193d10ae2026CAS |
Schlichting E, Blume H-P, Stahr K (1995) ‘Bodenkundliches Praktikum.’ 2nd edn (Blackwell: Hamburg, Germany)
Sommer M (2002) ‘Biogeochemie bewaldeter einzugsgebiete und ihr pedogenetischer kontext.’ Hohenheimer Bodenkundliche Hefte, 66. (University of Hohenheim: Hohenheim, Germany)
Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Si pools and fluxes in soils—A review. Journal of Plant Nutrition and Soil Science 169, 310–329.
| Si pools and fluxes in soils—A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlymsro%3D&md5=2fe6674b37888cb18775ec542626bbd6CAS |
Summerfield MA (1983) Silcrete. In ‘Chemical sediments and geomorphology’. (Eds AS Goudie, K Pye) pp. 59–93. (Academic Press: London)
Veerhoff M, Brümmer GW (1993) Bildung schlechtkristalliner bis amorpher verwitterungsprodukte in stark bis extrem versauerten waldböden. Zeitschrift für Pflanzenernährung und Bodenkunde 156, 11–17.
| Bildung schlechtkristalliner bis amorpher verwitterungsprodukte in stark bis extrem versauerten waldböden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFGgu7w%3D&md5=6c23da2fbd1d67681d9b49dc544af6a5CAS |
Wada K (1989) Allophane and Imogolite. In ‘Minerals in soil environments’. 2nd edn. (Eds JB Dixon, SB Weed) pp. 1051–1088. (Soil Science Society of America: Madison, WI, USA)
Wada K, Greenland DJ (1970) Selective dissolution and differential infrared spectroscopy for characterization of amorphous constituents in soil clays. Clay Minerals 8, 241–254.
| Selective dissolution and differential infrared spectroscopy for characterization of amorphous constituents in soil clays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltFWqs7c%3D&md5=f23d7dc31fbe43cc61e1981e83f12fc6CAS |
Wada KT, Hemni N, Yoshinaga N, Patterson SH (1972) Imomogolite and allophone formed in saprolite of basalt on Maui, Hawaii. Clays and Clay Minerals 20, 375–380.
| Imomogolite and allophone formed in saprolite of basalt on Maui, Hawaii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXoslSktw%3D%3D&md5=0f5b24a110f31ec00c0870b3911e792eCAS |