Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Molecular characteristics of permanganate- and dichromate-oxidation-resistant soil organic matter from a black-C-rich colluvial soil

Manuel Suárez-Abelenda A E , Joeri Kaal B , Marta Camps-Arbestain C , Heike Knicker D and Felipe Macías A
+ Author Affiliations
- Author Affiliations

A Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782- Santiago de Compostela, Spain.

B Instituto de Ciencias del Patrimonio (Incipit), Consejo Superior de Investigaciones Científicas (CSIC), Rúa San Roque 2, 15704 Santiago de Compostela, Spain.

C Institute of Natural Resources, Private Bag 11222, Massey University, Palmerston North 4442, New Zealand.

D Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Adva. Reina Mercedes 10, 41012 Sevilla, Spain.

E Corresponding author. Email: manuel.suarez@usc.es

Soil Research 52(2) 164-179 https://doi.org/10.1071/SR13195
Submitted: 5 July 2013  Accepted: 3 October 2013   Published: 6 March 2014

Abstract

Samples from a colluvial soil rich in pyrogenic material (black C, BC) in north-west Spain were subjected to K2Cr2O7 and KMnO4 oxidation and the residual soil organic matter (SOM) was NaOH-extracted and analysed using analytical pyrolysis–gas chromatography–mass spectroscopy (Py-GC/MS) and solid-state 13C cross-polarisation magic angle spinning–nuclear magnetic resonance (13C CP MAS-NMR) in order to study the susceptibility of different SOM fractions (fresh, degraded/microbial, BC and aliphatic) towards these oxidising agents. Untreated samples that were NaOH-extracted were also analysed. The Py-GC/MS and 13C NMR indicated that KMnO4 promotes the oxidation of carbohydrate products, mostly from degraded/microbial SOM and lignocellulose, causing a relative enrichment of aliphatic and aromatic structures. Residual SOM after K2Cr2O7 oxidation contained BC, N-containing BC and aliphatic structures. This was corroborated by a relatively intense resonance of aromatic C and some signal of alkyl C in 13C NMR spectra. These results confirm that dichromate oxidation residues contain a non-pyrogenic fraction mainly consisting of aliphatic structures.

Additional keywords: K2Cr2O7, KMnO4, SOM oxidation, charcoal, Py-GC/MS, 13C NMR.


References

Almendros G, González-Vila FJ, Martin F (1989) Room temperature alkaline permanganate oxidation of representative humic acids. Soil Biology & Biochemistry 21, 481–486.
Room temperature alkaline permanganate oxidation of representative humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFemur0%3D&md5=2d9fd03cfe45f4ea560bf7da2a3e8a8fCAS |

Almendros G, González-Vila FJ, Martin F (1990) Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances. Soil Science 149, 158–168.
Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1amurY%3D&md5=a7b871ae029b540d5db87ca8510b04faCAS |

Almendros G, Knicker H, González-Vila FJ (2003) Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N NMR spectroscopy. Organic Geochemistry 34, 1559–1568.
Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1SksLw%3D&md5=5e1a8b2df24df25aa4d8fcbc79459c64CAS |

Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry 33, 1093–1109.
Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlWjurk%3D&md5=7e79815745b5bd8d1033d86549739339CAS |

Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 54, 519–546.
Lignin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSnsrg%3D&md5=228629cb5e42f92d647ef559db42b875CAS |

Boon JJ, Pastorova I, Botto RE, Arisz PW (1994) Structural studies on cellulose pyrolysis and cellulose chars by PYMS, PYGCMS, FTIR, NMR and by wet chemical techniques. Biomass and Bioenergy 7, 25–32.
Structural studies on cellulose pyrolysis and cellulose chars by PYMS, PYGCMS, FTIR, NMR and by wet chemical techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVeksbc%3D&md5=0f71c1756a784f06d70e206f2ffee976CAS |

Buurman P, Roscoe R (2011) Different chemistry of free light and occluded light and extractable SOM fractions in soils of Cerrado, tilled and untilled fields, Minas Gerais, Brazil—a pyrolysis-GC/MS study. European Journal of Soil Science 62, 253–266.
Different chemistry of free light and occluded light and extractable SOM fractions in soils of Cerrado, tilled and untilled fields, Minas Gerais, Brazil—a pyrolysis-GC/MS study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltleqt70%3D&md5=fa3ddbe988dd9c59858affa8107603d2CAS |

Buurman P, Petersen F, Almendros G (2007) Soil organic matter chemistry in allophanic soils: A pyrolysis-GC/MS study of a Costa Rican Andosol Catena. European Journal of Soil Science 58, 1330–1347.
Soil organic matter chemistry in allophanic soils: A pyrolysis-GC/MS study of a Costa Rican Andosol Catena.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVWltw%3D%3D&md5=b6aec308240a799445c5095917c89be3CAS |

Carballas T, Duchaufour P, Jacquin F (1967) Évolution de la matière organique des rankers. Bulletin de l’École Nationale Supérieure Agronomique de Nancy 9, 20–28.

Christensen BT (1992) Physical fractionation of soil and organic matter in primary particle size and density separates. In ‘Advances in Soil Science. Vol. 20’. (Ed. BA Stewart) pp. 1–90. (Springer: New York)

Conteh A, Lefroy RDB, Blair GJ (1997) Dynamics of organic matter in soil as determined by variations in 13C/12C isotopic ratios and fractionation by ease of oxidation. Australian Journal of Soil Research 35, 881–890.
Dynamics of organic matter in soil as determined by variations in 13C/12C isotopic ratios and fractionation by ease of oxidation.Crossref | GoogleScholarGoogle Scholar |

Eckmeier E, Wiesenberg GLB (2009) Short-chain n-alkanes (C16–C20) in ancient soil are useful molecular markers for prehistoric biomass burning. Journal of Archaeological Science 36, 1590–1596.
Short-chain n-alkanes (C16–C20) in ancient soil are useful molecular markers for prehistoric biomass burning.Crossref | GoogleScholarGoogle Scholar |

Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156, 1322–1335.
Leaf epicuticular waxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1Wmtbo%3D&md5=627aaed3b08c3c3211fa878cad47144cCAS | 4975474PubMed |

Eusterhues K, Rumpel C, Kleber M, Kögel-Knabner I (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry 34, 1591–1600.
Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOhtro%3D&md5=7908770f8b78ba60b0a6b0b70b8e3a45CAS |

Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry 36, 1567–1575.
Stabilization of soil organic matter isolated via oxidative degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGhsbnE&md5=749f23047b0a2eb6263ea74436a4d243CAS |

Fabbri D, Torri C, Spokas KA (2012) Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production. Journal of Analytical and Applied Pyrolysis 93, 77–84.
Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CgtbvF&md5=2b9d46e20779fc6f9a00209c9a153012CAS |

Fründ R, Haider K, Lüdemann HD (1994) Impacts of soil management practices on the organic matter structure - investigations by CPMAS 13C NMR-spectroscopy. Zeitschrift für Pflanzenernährung und Bodenkunde 157, 29–35.
Impacts of soil management practices on the organic matter structure - investigations by CPMAS 13C NMR-spectroscopy.Crossref | GoogleScholarGoogle Scholar |

Gillman GP, Sinclair DF, Beech TA (1986) Recovery of organic carbon by the Walkley and Black procedure in highly weathered soils. Communications in Soil Science and Plant Analysis 17, 885–892.
Recovery of organic carbon by the Walkley and Black procedure in highly weathered soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlvV2qtbg%3D&md5=f7ccd9225713bb31932b6359c46d26f0CAS |

González-Vila FJ, Martin F (1985) Chemical structural characteristics of humic acids extracted from composted municipal refuse. Agriculture, Ecosystems & Environment 14, 267–278.
Chemical structural characteristics of humic acids extracted from composted municipal refuse.Crossref | GoogleScholarGoogle Scholar |

Gramble GR, Sethuraman A, Akin DE, Eriksson KE (1994) Biodegradation of lignocellulose in Bermuda grass by white rot fungi analysed by solid-state 13C nuclear magnetic resonance. Applied and Environmental Microbiology 60, 3138–3144.

Gutiérrez A, Martínez MJ, Almendros G, González-Vila FJ, Martínez AT (1995) Hyphal-sheath polysaccharides in fungal deterioration. The Science of the Total Environment 167, 315–328.
Hyphal-sheath polysaccharides in fungal deterioration.Crossref | GoogleScholarGoogle Scholar |

Harvey OR, Kuo LJ, Zimmerman AR, Louchouarn P, Amonette JE, Herbert BE (2012) An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environmental Science & Technology 46, 1415–1421.
An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1ajsw%3D%3D&md5=f460bd1d63813dd53c58543f357028cdCAS | 24592486PubMed |

Hatcher PG, Schnitzer M, Vassallo AM, Wilson MA (1989) The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies. Geochimica et Cosmochimica Acta 53, 125–130.
The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlyqurg%3D&md5=0810e046eac2bf6f80eddc8e77d9e980CAS |

Heanes DL (1984) Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Communications in Soil Science and Plant Analysis 15, 1191–1213.
Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmt12itL8%3D&md5=3cd344f3ae80a3bd296ba30344dab336CAS |

IUSS Working Group WRB (2006) World reference base for soil resources. In ‘World Soil Resources Reports, No. 103’. 2nd edn (FAO: Rome)

Kaal J, Rumpel C (2009) Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon? Organic Geochemistry 40, 1179–1187.
Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleku7vJ&md5=c46baf6882eae581cc181e80a7f0892cCAS |

Kaal J, van Mourik JM (2008) Micromorphological evidence of black carbon in colluvial soils from NW Spain. European Journal of Soil Science 59, 1133–1140.
Micromorphological evidence of black carbon in colluvial soils from NW Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2ktg%3D%3D&md5=5783e9ba4d384c6309d846a6dd2e1560CAS |

Kaal J, Martínez-Cortizas A, Nierop KGJ (2009) Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon. Journal of Analytical and Applied Pyrolysis 85, 408–416.
Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVGrtLo%3D&md5=bbcf1f47f68957f1573e40d9349cf6f9CAS |

Kaal J, Carrión Y, Asouti E, Martín Seijo M, Costa Casais M, Martínez Cortizas A, Criado Boado F (2011) Long-term deforestation in NW Spain: Linking the Holocene fire history to vegetation change and human activities. Quaternary Science Reviews 30, 161–175.
Long-term deforestation in NW Spain: Linking the Holocene fire history to vegetation change and human activities.Crossref | GoogleScholarGoogle Scholar |

Kaal J, Schneider MPW, Schmidt MWI (2012a) Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: a pyrolysis-GC/MS study. Biomass and Bioenergy 45, 115–129.
Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: a pyrolysis-GC/MS study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCrsrrF&md5=c0dea111653e1b3e2840da13978994fbCAS |

Kaal J, Nierop KGJ, Kraal P, Preston CM (2012b) A first step towards identification of tannin-derived black carbon: conventional pyrolysis (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS) of charred condensed tannins. Organic Geochemistry 47, 99–108.
A first step towards identification of tannin-derived black carbon: conventional pyrolysis (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS) of charred condensed tannins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFelsL0%3D&md5=da5e6f6491149490744ba6360dd16a75CAS |

Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. European Journal of Soil Science 56, 717–725.

Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118.
How does fire affect the nature and stability of soil organic nitrogen and carbon? A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlajs7c%3D&md5=aadb7d01cb61f634b1a108fd82ad3779CAS |

Knicker H, Lüdemann HD (1995) 15N and 13C CPMAS and solution NMR studies of 15N enriched plant-material during 600 days of microbial degradation. Organic Geochemistry 23, 329–341.
15N and 13C CPMAS and solution NMR studies of 15N enriched plant-material during 600 days of microbial degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFWms70%3D&md5=c54d3d8403784108922a2282459d5007CAS |

Knicker H, Totsche KU, Almendros G, González-Vila FJ (2005) Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS 13C NMR spectra obtained from pyrogenic humic material. Organic Geochemistry 36, 1359–1377.
Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS 13C NMR spectra obtained from pyrogenic humic material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVamsr3E&md5=848472e25a0594c25019d247683e22caCAS |

Knicker H, Müller P, Hilscher A (2007) How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma 142, 178–196.
How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFels7rK&md5=377ab08286c1015695cf2e1295079afbCAS |

Knicker H, Hilscher A, González-Vila FJ, Almendros G (2008) A new conceptual model for the structural properties of char produced during vegetation fires. Organic Geochemistry 39, 935–939.
A new conceptual model for the structural properties of char produced during vegetation fires.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFOltL4%3D&md5=8e2ae05a0619f1d3160c8896b58c8614CAS |

Kögel-Knabner I (1995) Composition of soil organic matter. In ‘Methods in applied soil microbiology and biochemistry’. (Eds P Nannipieri, K Alef) pp. 66–78. (Academic Press: London)

Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80, 243–270.
13C and 15N NMR spectroscopy as a tool in soil organic matter studies.Crossref | GoogleScholarGoogle Scholar |

Lefroy RDB, Blair GJ, Strong WM (1993) Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil 155-156, 399–402.
Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance.Crossref | GoogleScholarGoogle Scholar |

Loginow W, Wisniewski W, Gonet SS, Ciescinska B (1987) Fractionation of organic C based on susceptibility to oxidation. Polish Journal of Soil Science 20, 47–52.

López-Merino L, Silva-Sánchez N, Kaal J, López-Sáez JA, Martínez-Cortizas A (2012) Post-disturbance vegetation dynamics during the Late Pleistocene and the Holocene: an example from NW Iberia. Global and Planetary Change 92-93, 58–70.
Post-disturbance vegetation dynamics during the Late Pleistocene and the Holocene: an example from NW Iberia.Crossref | GoogleScholarGoogle Scholar |

Macías F, Camps-Arbestain M (2010) Soil carbon sequestration in a changing global environment. Mitigation and Adaptation Strategies for Global Change 15, 511–529.
Soil carbon sequestration in a changing global environment.Crossref | GoogleScholarGoogle Scholar |

Moldoveanu SC (1998) An introduction to analytical pyrolysis. In ‘Analytical pyrolysis of organic polymers. Techniques and instrumentation in analytical chemistry’. (Ed. SC Moldoveanu) (Elsevier: Amsterdam)

Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In ‘Methods of Soil Analysis Part 2’. 2nd edn (Eds DL Sparks, AL Page, PA Helmke, RH Loeppert, PN, Soltanpour, MA, Tabatabai, CT, Johnston, ME Sumner) pp. 961–1010. (American Society of Agronomy, Inc.: Madison, WI)

Nierop KGJ, van Bergen F, Buurman P, van Lagen B (2005) NaOH and Na-Na4P2O7-extractable organic matter in two allophanic volcanic ash soils of the Azores Islands-a pyrolysis GC/MS study. Geoderma 127, 36–51.
NaOH and Na-Na4P2O7-extractable organic matter in two allophanic volcanic ash soils of the Azores Islands-a pyrolysis GC/MS study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWjs70%3D&md5=dd5c633dce06e902928c7141ea867ccdCAS |

Pastorova I, Botto RE, Arisz PW, Boon JJ (1994) Cellulose char structure: a combined analytical PyGC-MS, FTIR and NMR study. Carbohydrate Research 262, 27–47.
Cellulose char structure: a combined analytical PyGC-MS, FTIR and NMR study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVait7w%3D&md5=51c2c450771bdebe64e199793d8f08a0CAS |

Piccolo A (1996) Humus and soil conservation. In ‘Humic substances in terrestrial ecosystems’. (Ed. A Piccolo) pp. 225–264. (Elsevier: Amsterdam)

Poirier N, Sohi SP, Gaunt JL, Mahieu N, Randall EW, Powlson DS, Evershed RP (2005) The chemical composition of measurable soil organic matter pools. Organic Geochemistry 36, 1174–1189.
The chemical composition of measurable soil organic matter pools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvV2mt7w%3D&md5=cfada810305696baf882c1e4bd400552CAS |

Polvillo O, González-Pérez JA, Boski T, González-Vila FJ (2009) Structural features of humic acids from a sedimentary sequence in the Guadiana estuary (Portugal–Spain border). Organic Geochemistry 40, 20–28.
Structural features of humic acids from a sedimentary sequence in the Guadiana estuary (Portugal–Spain border).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWktbfE&md5=0e1ae4e35cabe0c48d23c2a9520d5bf2CAS |

Rumpel C, González-Pérez JA, Bardoux G, Largeau C, González-Vila FJ, Valentín C (2007) Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Organic Geochemistry 38, 911–920.
Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWnt7g%3D&md5=d2b67251f08ea3c3ee32581c7e2910d9CAS |

Sáiz-Jiménez C (1994a) Analytical pyrolysis of humic substances; pitfalls, limitations, and possible solutions. Environmental Science & Technology 28, 1773–1780.
Analytical pyrolysis of humic substances; pitfalls, limitations, and possible solutions.Crossref | GoogleScholarGoogle Scholar |

Sáiz-Jiménez C (1994b) Production of alkylbenzenes and alkylnaphthalenes upon pyrolysis of unsaturated fatty acids. Naturwissenschaften 81, 451–453.

Sáiz-Jiménez C, de Leeuw JW (1986) Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis 9, 99–119.
Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

Samaté AD, Nacro M, Menut C, Malaty G, Bessiere JM (1998) Aromatic plants of tropical west Africa. VII. Chemical composition of essential oils of two Eucalyptus species (Myrtaceae) from Burkina Fasso: Eucalyptus alba Muell. and Eucalyptus camaldulensis Dehnardt. Journal of Essential Oil Research 10, 321–324.
Aromatic plants of tropical west Africa. VII. Chemical composition of essential oils of two Eucalyptus species (Myrtaceae) from Burkina Fasso: Eucalyptus alba Muell. and Eucalyptus camaldulensis Dehnardt.Crossref | GoogleScholarGoogle Scholar |

Schellekens J, Buurman P, Kuyper TW (2012) Source and transformations of lignin in Carex-dominated peat. Soil Biology & Biochemistry 53, 32–42.
Source and transformations of lignin in Carex-dominated peat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVels7vF&md5=5c8476f7031763897b23fff788b625a3CAS |

Schmidt MWI, Skjemstad JO, Czimczik CI, Glaser B, Prentice KM, Gelinas Y, Kuhlbusch TAJ (2001) Comparative analysis of black carbon in soils. Global Biogeochemical Cycles 15, 163–167.
Comparative analysis of black carbon in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCht7Y%3D&md5=67d3d9baea3813604cc42489ce337e42CAS |

Schnitzer MI, Monreal CM, Jandl G, Leinweber P, Fransham PB (2007) The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS). Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 42, 79–95.
The conversion of chicken manure to biooil by fast pyrolysis II. Analysis of chicken manure, biooils, and char by curie-point pyrolysis-gas chromatography/mass spectrometry (Cp Py-GC/MS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFWiug%3D%3D&md5=4a4e985a53564e309b387b5efcf0bd35CAS |

Schulten HR, Plage B, Schnitzer M (1991) A chemical structure for humic substances. Naturwissenschaften 78, 311–312.
A chemical structure for humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFyrsL8%3D&md5=4038ba5cb054c919ea676cdb60333857CAS |

Shindo H, Honna T, Yamamoto S, Honma H (2004) Contribution of charred plant fragments to soil organic carbon in Japanese volcanic ash soils containing black humic acids. Organic Geochemistry 35, 235–241.
Contribution of charred plant fragments to soil organic carbon in Japanese volcanic ash soils containing black humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVCnsb8%3D&md5=b1d62bb460f17a9bdb6a9502760af2cfCAS |

Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241, 155–176.
Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltV2jsbo%3D&md5=4ba4a1467a604cb69b347ca0238e8b8eCAS |

Skjemstad JO, Taylor JA (1999) Does the Walkley-Black method determine soil charcoal? Communications in Soil Science and Plant Analysis 30, 2299–2310.
Does the Walkley-Black method determine soil charcoal?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1GltL0%3D&md5=ec8eab96d63df71fcab359a0a3c82568CAS |

Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Australian Journal of Soil Research 34, 251–271.
The chemistry and nature of protected carbon in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisV2is74%3D&md5=f3b6dccc63c5ce5fe81f13fa19769c2dCAS |

Skjemstad JO, Swift RS, McGowan JA (2006) Comparison of the particulate organic carbon and permanganate oxidation methods for estimating labile soil organic carbon. Soil Research 44, 255–263.
Comparison of the particulate organic carbon and permanganate oxidation methods for estimating labile soil organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFWitLc%3D&md5=61f7474add15a9abb9b7f26b7a1de308CAS |

Soil Survey Staff (1998) ‘Keys to Soil Taxonomy.’ 8th edn (USDA Natural Resources Conservation Sites (NRCS): Washington, DC)

Song J, Peng P (2010) Characterisation of black carbon materials by pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis 87, 129–137.
Characterisation of black carbon materials by pyrolysis-gas chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjtr3O&md5=5fe55eed0745b4775a876bf9b62cbe7fCAS |

Stankiewicz BA, van Bergen PF, Duncan IJ, Carter JF, Briggs DEG, Evershed RP (1996) Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography and pyrolysis/gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 10, 1747–1757.
Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography and pyrolysis/gas chromatography/mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntlCls78%3D&md5=07addafb2e1f100f2e3da06116f973eeCAS | 8953778PubMed |

Stevenson FJ (1994) ‘Humus chemistry, genesis, composition, reactions.’ 2nd edn (John Wiley and Sons: New York)

Stuczynski TI, McCarthy GW, Reeves JB, Wright RJ (1997) Use of pyrolysis GC/MS for assessing changes in soil organic matter quality. Soil Science 162, 97–105.
Use of pyrolysis GC/MS for assessing changes in soil organic matter quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs12murw%3D&md5=aaa3aa46f5a37d26fe6a56b828e50432CAS |

Suárez-Abelenda M, Buurman P, Camps-Arbestain M, Kaal J, Martínez-Cortizas A, Gartzia-Bengoetxea N, Macías F (2011) Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study. European Journal of Soil Science 62, 834–848.
Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study.Crossref | GoogleScholarGoogle Scholar |

Tabatabai MA (1996) Soil organic matter testing: an overview. In ‘Soil organic matter: Analysis and interpretation’. SSSA Special Publication No. 46. (Eds FR Magdoff, MA Tabatabai, EA Hanlon) pp. 1–9. (SSSA: Madison, WI)

Tegelaar EW, de Leeuw JW, Sáiz-Jiménez C (1989) Possible origin of aliphatic moieties in humic substances. The Science of the Total Environment 81-82, 1–17.
Possible origin of aliphatic moieties in humic substances.Crossref | GoogleScholarGoogle Scholar |

Tegelaar EW, Hollman G, Vandervegt P, de Leeuw JW, Holloway PJ (1995) Chemical characterization of the periderm tissue of some angiosperm species: Recognition of an insoluble, nonhydrolyzable, aliphatic biomacromolecule (suberan). Organic Geochemistry 23, 239–251.
Chemical characterization of the periderm tissue of some angiosperm species: Recognition of an insoluble, nonhydrolyzable, aliphatic biomacromolecule (suberan).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVyhtrs%3D&md5=12f3aa02625ebf83d6f611e7f125e591CAS |

Tirol-Padre A, Ladha JK (2004) Assessing the reliability of permanganate oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal 68, 969–978.
Assessing the reliability of permanganate oxidizable carbon as an index of soil labile carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktV2gu78%3D&md5=2aa77fad9b08ffb8ea8706032801f980CAS |

Van der Kaaden A, Boon JJ, de Leeuw JW, de Lange F, Wijnand Schuyl PJ, Schulten HR, Bahr U (1984) Comparison of analytical pyrolysis techniques in the characterization of chitin. Analytical Chemistry 56, 2160–2165.
Comparison of analytical pyrolysis techniques in the characterization of chitin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlt1Khsbc%3D&md5=cf420448ea23d88cbca276f59a0adf13CAS |

van Soest PJ, Wine RH (1986) Determination of lignin and cellulose in acid-detergent fibre with permanganate. Journal of the Association of Official Agricultural Chemists 51, 780–785.

Wilson MA, Barron PF, Goh KM (1981) Cross polarisation 13C NMR spectroscopy of some genetically related New Zealand soils. Journal of Soil Science 32, 419–425.
Cross polarisation 13C NMR spectroscopy of some genetically related New Zealand soils.Crossref | GoogleScholarGoogle Scholar |

Wolbach WS, Anders E (1989) Elemental carbon in sediments: Determination and isotopic analysis in the presence of kerogen. Geochimica et Cosmochimica Acta 53, 1637–1647.
Elemental carbon in sediments: Determination and isotopic analysis in the presence of kerogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlOrs7c%3D&md5=3a512c8fee156afadccde9c37bab474eCAS |