Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Spectroscopic behaviour of 14C-labeled humic acids in a long-term field experiment with three cropping systems

Michael Tatzber A D , Michael Stemmer B , Heide Spiegel B , Christian Katzlberger B , Franz Zehetner A , Georg Haberhauer C , Elena Garcia-Garcia A and Martin H. Gerzabek A
+ Author Affiliations
- Author Affiliations

A Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan Straße 82, 1190 Vienna, Austria.

B Austrian Agency for Health and Food Safety, Vienna, Spargelfeldstraße 191, 1226 Vienna, Austria.

C Austrian Research Centers GmbH, Department of Environmental Research, 2444 Seibersdorf, Austria.

D Corresponding author. Email: michael.tatzber@boku.ac.at

Australian Journal of Soil Research 47(5) 459-469 https://doi.org/10.1071/SR08231
Submitted: 11 October 2008  Accepted: 20 April 2009   Published: 18 August 2009

Abstract

The stabilisation of 14C-labelled farmyard manure was investigated under different cropping systems (crop rotation, monoculture, and bare fallow) in a long-term field experiment established in 1967. Solid-state 13C-NMR of bulk soils yielded a gradient of increasing aromatic properties in the order: straw manure–crop rotation < straw manure–monoculture < straw and farmyard manure–bare fallow. The opposite trend was observed for O-alkyl groups. The farmyard manure–bare fallow treatment was used to investigate changes of humic acids (HAs) with time. The FT-IR bands of aromatics, carbonyl groups, and a band of methyls and benzene rings increased over the 36 years of the experiment, whereas 2 amide bands and a band of sulfone and/or ester groups decreased. Fluorescence spectroscopy verified the increase in aromatic properties with age. Consequently, during soil organic matter stabilisation, HAs showed increasing properties of carbonyl and aromatic groups, whereas amidic groups decreased. The dynamic character of HAs, as shown by 14C, was also reflected by distinct spectroscopic changes over the period of investigation.

Additional keywords: crop, FT-IR, solid-state 13C-NMR, fluorescence spectroscopy.


Acknowledgements

This work was financed by the Austrian Science Foundation (FWF), project number P16667-B06. We thank Gabriele Pusch for helpful information. We are much obliged to Ruth Pöll, Ewald Brauner, and Elisabeth Kopecky for performing the elemental analyses and to Heike Knicker for the 13C-NMR measurements. We also thank Georg Lair for linguistic help.


References


Antunes MCG, Esteves da Silva JCG (2005) Multivariate curve resolution analysis excitation-emission matrices of fluorescence of humic substances. Analytica Chimica Acta 546, 52–59.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Bayer C, Martin-Neto L, Mielniczuk J, Saab SC, Milori DMP, Bagnato VS (2002) Tillage and cropping system effects on soil humic acid characteristics as determined by electron spin resonance and fluorescence spectroscopies. Geoderma 105, 81–92.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Campbell CA, Zentner RP, Liang BC, Roloff G, Gregorich EC, Blomert B (1999) Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan – Effect of crop rotations and fertilizers. Canadian Journal of Soil Science 80, 179–192. open url image1

Collins HP, Rasmussen PE, Douglas CL (1992) Crop rotation and residue management effects on soil organic carbon and microbial effects. Soil Science Society of America Journal 56, 783–788. open url image1

Ding G, Novak JM, Amarasiriwardena D, Hunt PG, Xing B (2002) Soil organic matter characteristics as affected by tillage management. Soil Science Society of America Journal 66, 421–429.
CAS |
open url image1

Ellerbrock RH, Gerke HH (2004) Characterizing organic matter of soil aggregate coatings and biophores by Fourier transform infrared spectroscopy. European Journal of Soil Science 55, 219–228.
Crossref | GoogleScholarGoogle Scholar | open url image1

Francioso O, Ciavatta C, Tugnoli V, Sanchez-Cortes S, Gessa C (1998) Spectroscopic characterization of pyrophosphate incorporation during extraction of peat humic acids. Soil Science Society of America Journal 62, 181–187.
CAS |
open url image1

Gerzabek MH (1991) Criteria for compost maturity – methods for organic substances characterization. OEFZS Report Nr. 4584, Hauptabteilung Agrarforschung und Biotechnologie, Österreichisches Forschungszentrum Seibersdorf, A-2444 Seibersdorf.

Gerzabek MH, Antil RS, Kögel-Knabner I, Knicker H, Kirchmann H, Haberhauer G (2006) How are soil use and management reflected by soil organic matter characteristics: a spectroscopic approach. European Journal of Soil Science 57, 485–494.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Gerzabek MH, Pichlmayer F, Kirchmann H, Haberhauer G (1997) The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. European Journal of Soil Science 48, 273–282.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gerzabek MH, Ullah SM (1991) Humic substances in soils from Bangladesh, Namibia and Canada. International Agrophysics 5, 197–203. open url image1

Gonçalves CN, Dalmolin RSD, Dick D, Knicker H, Klamt E, Kögel-Knabner I (2003) The effect of 10% HF treatment on the resolution of CPMAS 13C spectra and on the quality of organic matter in ferrosols. Geoderma 116, 373–392.
Crossref | GoogleScholarGoogle Scholar | open url image1

González Pérez M, Martin-Neto L, Saab SC, Novotny EH, Milori DMBP, Colnago LA, Melo WJ, Knicker H (2004) Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma 118, 181–190.
Crossref | GoogleScholarGoogle Scholar | open url image1

Haberhauer G, Gerzabek MH (1999) Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter. Vibrational Spectroscopy 19, 413–417.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Haberhauer G, Rafferty B, Strebl F, Gerzabek MH (1998) Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 83, 331–342.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Havlin JL, Kissel DE, Maddux LD, Claassen MM, Long JH (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Science Society of America Journal 54, 448–452. open url image1

Haynes RJ (2000) Labile organic matter as an indicator of organic matter quality in an arable and pastoral soils in New Zealand. Soil Biology & Biochemistry 32, 211–219.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hesse M , Meier H , Zeeh B (2005) ‘Spektroskopische Methoden in der organischen Chemie.’ (Thieme: Stuttgart)

Knicker H, Fründ R, Lündemann HD (1993) The chemical nature of nitrogen in soil organic matter. Naturwissenschaften 80, 219–221.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Organic Geochemistry 31, 609–625.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kononova MM (1958) ‘Die humusstoffe des bodens.’ (Deutscher Verlag der Wissenschaften: Berlin)

Larsson T, Wedborg M, Turner D (2007) Correction of inner-filter effect in fluorescence excitation-emission matrix spectrometry using Raman scatter. Analytica Chimica Acta 583, 357–363.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Mahieu N, Olk DC, Randall EW (2002) Multinuclear magnetic resonance analysis of two humic acid fractions from lowland rice soils. Journal of Environmental Quality 31, 421–430.
CAS | PubMed |
open url image1

Meissl K, Smidt E, Schwanninger M (2007) Prediction of humic acid content and respiration activity of biogenic waste by means of Fourier transform infrared (FTIR) spectra and partial least squares regression (PLS-R) models. Talanta 72, 791–799.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Nardi S, Morari F, Berti A, Tosoni M, Giardini L (2004) Soil organic matter properties after 40 years of different use of organic and mineral fertilizers. European Journal of Agronomy 21, 357–367.
Crossref | GoogleScholarGoogle Scholar | open url image1

Novotny EH, Blum WEH, Gerzabek MH, Mangrich AS (1999) Soil management system effects on size fractionated humic substances. Geoderma 92, 87–109.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Novotny EH, Knicker H, Colnago LA, Martin-Neto L (2006) Effect of residual vanadyl on the spectroscopic analysis of humic acids. Organic Geochemistry 37, 1562–1572.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Oberländer HE, Roth K (1968) The use of a growth chamber for labelling plants with 14C. Atompraxis 14, 1–6. open url image1

Oberländer HE, Roth K (1974) Ein Kleinfeldversuch über den Abbau und die Humifizierung von 14C-markiertem Stroh und Stallmist. Journal für landwirtschaftliche Forschung 25, 111–129. open url image1

Oberländer HE, Roth K (1980) Der umsatz 14C-markierter wirtschaftsdünger im boden. Journal für landwirtschaftliche Forschung 33, 179–188. open url image1

Olk DC (2006) A chemical fractionation for structure-function relations of soil organic matter in nutrient cycling. Soil Science Society of America Journal 70, 1013–1022.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Olk DC, Cassman KG, Fan TWM (1995) Characterization of two humic acid fractions from a calcareous vermiculitic soil: implications for the humification process. Geoderma 65, 195–208.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

ÖNORM (1999 a) ‘Chemical analyses of soils – Determination of organic carbon by dry combustion.’ ÖNORM L 1080, Edition 1 April. (Austrian Standards Institute: Vienna)

ÖNORM (1999 b) ‘Chemical analyses of soils – Determination of carbonate.’ ÖNORM L 1084, Edition 1 April. (Austrian Standards Institute: Vienna)

Orlov DS (1985) ‘Humus acids of soils.’ Russian Translation Series 35. (A.A. Balkema: Rotterdam)

Piccolo A, Mbagwu JSC (1994) Humic substances and surfactants effects on the stability of two tropical soils. Soil Science Society of America Journal 58, 950–955.
CAS |
open url image1

Schnitzer M , Khan SU (1978) ‘Soil organic matter.’ (Elsevier Scientific Publishing Company: Amsterdam)

Senesi N, D’Orazio V, Ricca G (2003) Humic acids in the first generation of EUROSOILS. Geoderma 116, 325–344.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Spaccini R, Piccolo A, Haberhauer G, Stemmer M, Gerzabek MH (2001) Decomposition of maize straw in three European soils as revealed by DRIFT spectra of soil particle fractions. Geoderma 99, 245–260.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Steen E, Lindén B (1987) Role of fine roots in the nitrogen economy of sugar beet. Journal of Agronomy & Crop Science 158, 1–7.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tatzber M (2007) Carbon mineralization and stabilization under different tillage treatments (Austria) . PhD dissertation, University of Natural Resources and Applied Life Sciences, Vienna, Austria.

Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek MH (2008) Impact of different tillage practices on molecular characteristics of humic acids in a long-term field experiment – An application of three different spectroscopic methods. The Science of the Total Environment 406, 256–268.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Mentler A, Gerzabek MH (2007) Development and application of advanced FTIR characterization methods for extracted and residual humic substances. Journal of Plant Nutrition and Soil Science 170, 522–529.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Zehetner F, Haberhauer G, Roth K, Garcia-Garcia E, Gerzabek MH (2009) Decomposition of carbon-14-labeled organic amendments and humic acids in a long-term field experiment. Soil Science Society of America Journal 73, 744–750.
CAS | Crossref |
open url image1

Trubetskaya O, Trubetskoj O, Guyot G, Andreux F, Richard C (2002) Fluorescence of soil humic acids and their fractions obtained by tandem size exclusion chromatography–polyacrylamide gel electrophoresis. Organic Geochemistry 33, 213–220.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

WRB (2006) ‘World reference base for soil resources. A framework for international classification, correlation and communication.’ World Soil Resources Report No. 103. (Food and Agriculture Organisation of the UN: Rome)

Zech W, Senesi N, Guggenberger G, Kaiser K, Lehmann J, Miano TM, Miltner A, Schroth G (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79, 117–161.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Zeller A , Öberländer HE , Roth K (1968) A field experiment on the influence of cultivation practices on the transformation of 14C-labelled farmyard manure and 14C-labelled straw into humic substances. In ‘Isotopes and radiation in soil organic-matter studies. Proceedings Series’. pp. 265–274. (International Atomic Energy Agency: Vienna)