Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Digital soil class mapping using legacy soil profile data: a comparison of a genetic algorithm and classification tree approach

M. A. Nelson A B and I. O. A. Odeh A
+ Author Affiliations
- Author Affiliations

A Faculty of Agriculture, Food and Natural Resources, The University of Sydney, NSW, Australia.

B Corresponding author. Email: michael.n@usyd.edu.au

Australian Journal of Soil Research 47(6) 632-649 https://doi.org/10.1071/SR08224
Submitted: 1 October 2008  Accepted: 21 May 2009   Published: 30 September 2009

Abstract

Digital soil class mapping (DSCM) provides a means of meeting the growing global demand for soil information. The search for optimal models for digital soil class mapping to take advantage of increasing availability of ancillary information, such as gamma radiometric data, is ongoing. One of the novel approaches to DSCM is based on genetic algorithms, which provide predictive function for DSCM. This paper aims: to develop a scheme for implementing genetic algorithms for rule-set production (GARP) in digital soil class mapping; to compare the performance of GARP and classification tree model (CT); and to evaluate the usefulness of gamma radiometrics as a predictor for DSCM of legacy soil data. We first collated the legacy soil class data from databases of soil profiles and the associated ancillary data from disparate sources. We then created a 200-m resolution DSCM based on the Australian Soil Classification, for the Namoi catchment in north-western New South Wales, using GARP based on the general scorpan-sspfe model and compared the GARP performance with the widely used CT model. Elevation, terrain attributes, magnetic survey, land use, NDVI, and, where available, radiometric data were used as the ancillary variables. In this implementation, inclusion of radiometric data in either of the prediction models significantly improved the classification accuracy and the resulting DSCM. Based on various classification and prediction performance measures, GARP was shown to be outperformed by the CT. We conclude that GARP needs further improvement for its full potential to be realised for digitally mapping soil classes.

Additional keywords: digital soil mapping, scorpan, genetic algorithm, GARP, classification tree.


Acknowledgements

The authors acknowledge the support of the Cotton Catchment Communities Cooperative Research Centre for their financial support through their Summer Scholarship program for the first author. We also thank Dr Budiman Minasny of the University of Sydney for his suggestion on some of the techniques used in this paper.


References


Anderson RP, Gomez-Laverde M, Peterson AT (2002a) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography 11, 131–141.
Crossref | GoogleScholarGoogle Scholar | open url image1

Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162, 211–232.
Crossref | GoogleScholarGoogle Scholar | open url image1

Anderson RP, Peterson AT, Gomez-Laverde M (2002b) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bailey N, Clements T, Lee JT, Thompson S (2003) Modelling soil series data to facilitate targeted habitat restoration: a polytomous logistic regression approach. Journal of Environmental Management 67, 395–407.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Barker S , Benitez S , Baldy J , Cisneros-Heredia D , Colorado G et al (2006) Modeling the South American Range of the Cerulean Warbler. In ‘ESRI International User Conference’. (ESRI: Redlands, CA)

Behrens T, Forster H, Scholten T, Steinrucken U, Spies ED, Goldschmitt M (2005) Digital soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 168, 21–33.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Behrens T , Scholten T (2007) A comparison of data mining techniques in predictive soil mapping. In ‘Digital soil mapping: an introductory perspective’. (Eds P Lagacherie, AB McBratney, M Voltz) pp. 353–364. (Elsevier: Amsterdam)

Bishop TFA, McBratney AB, Whelan BM (2001) Measuring the quality of digital soil maps using information criteria. Geoderma 103, 95–111.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bishop TFA, Minasny B, McBratney AB (2006) Uncertainty analysis for soil-terrain models. International Journal of Geographical Information Science 20, 117–134.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bui E (2007) A review of digital soil mapping in Australia. In ‘Digital soil mapping: an introductory perspective’. (Eds P Lagacherie, AB McBratney, M Voltz) pp. 25–39. (Elsevier: Amsterdam)

Bui EN, Loughhead A, Corner R (1999) Extracting soil-landscape rules from previous soil surveys. Australian Journal of Soil Research 37, 495–508.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bui EN, Moran CJ (2003) A strategy to fill gaps in soil survey over large spatial extents: an example from the Murray-Darling basin of Australia. Geoderma 111, 21–44.
Crossref | GoogleScholarGoogle Scholar | open url image1

Carre F, McBratney AB, Mayr T, Montanarella L (2007) Digital soil assessments: Beyond DSM. Geoderma 142, 69–79.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen GJ, Peterson AT (2002) Prioritization of areas in China for the conservation of endangered birds using modelled geographic distributions. Bird Conservation International 12, 197–209.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cohen J (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cook SE, Corner RJ, Groves PR, Grealish GJ (1996) Use of airborne gamma radiometric data for soil mapping. Australian Journal of Soil Research 34, 183–194.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dikau R , Brabb E , Mark R (1991) ‘Landform classification of New Mexico by Computer.’ (U.S. Geological Survey: Denver, CO)

Donaldson S , Heath T (1997) Namoi river catchment report on land degradation and proposals for integrated management for its treatment and prevention. NSW Department of Land and Water Conservation.

Gallant JC, Dowling TI (2003) A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research 39(12), 1347.
Crossref | GoogleScholarGoogle Scholar | open url image1

Giasson E, Clarke RT, Inda AV, Merten GH, Tornquist CG (2006) Digital soil mapping using multiple logistic regression on terrain parameters in Southern Brazil. Scientia Agricola 63, 262–268.
Crossref | GoogleScholarGoogle Scholar | open url image1

Good PI (1999) ‘Resampling methods: a practical guide to data analysis.’ (Birkhauser: Boston)

Hammond EH (1964) Analysis of properties in land form geography – an application to broad-scale land form mapping. Annals of the Association of American Geographers 54, 11–19.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Hengl T, Toomanian N, Reuter HI, Malakouti MJ (2007) Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma 140, 417–427.
Crossref | GoogleScholarGoogle Scholar | open url image1

Isbell RF (1996) ‘The Australian Soil Classification.’ (CSIRO Publishing: Collingwood, Vic.)

Jaques AL, Wellman P, Whitaker A, Wyborn D (1997) High-resolution geophysics in modern geological mapping. AGSO Journal of Australian Geology & Geophysics 17, 159–173. open url image1

Lagacherie P, Holmes S (1997) Addressing geographical data errors in a classification tree for soil unit prediction. International Journal of Geographical Information Science 11, 183–198.
Crossref | GoogleScholarGoogle Scholar | open url image1

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159–174.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

McBratney AB, Odeh IOA, Bishop TFA, Dunbar MS, Shatar TM (2000) An overview of pedometric techniques for use in soil survey. Geoderma 97, 293–327.
Crossref | GoogleScholarGoogle Scholar | open url image1

McBratney AB, Santos MLM, Minasny B (2003) On digital soil mapping. Geoderma 117, 3–52.
Crossref | GoogleScholarGoogle Scholar | open url image1

McKenzie NJ , Gessler PE , Ryan PJ , O’Connell D (2000) The roles of terrain analysis in soil mapping. In ‘Terrain analysis: Principles and applications’. (Eds JP Wilson, J Gallant) (John Wiley & Sons, Inc.: New York)

MDBC (1999) Inventory of GIS datasets held by the Murray-Darling Basin Commission. Murray-Darling Basin Commission.

Minasny B, McBratney AB (2007) Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma 142, 285–293.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moran CJ, Bui EN (2002) Spatial data mining for enhanced soil map modelling. International Journal of Geographical Information Science 16, 533–549.
Crossref | GoogleScholarGoogle Scholar | open url image1

NCMA (2005) Namoi Catchment Management Authority: Three year investment strategy 2004–2007. Namoi Catchment Management Authority.

NCMB (2003) Namoi Catchment: A Blueprint for the Future. NSW Department of Land and Water Conservation, Sydney.

Northcote KH (1979) ‘A factual key for the recognition of Australian soil.’ (Rellim Technical Publications: Glenside, S. Aust.)

Oberhauser K, Peterson AT (2003) Modeling current and future potential wintering distributions of eastern North American monarch butterflies. Proceedings of the National Academy of Sciences of the United States of America 100, 14 063–14 068.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Odeh IOA , Cattle S , Triantafilis J , McBratney AB (2004) The Australian Cotton Soil Database and Geographic Information System. In ‘Quality cotton – a living industry. Proceedings of the 12 Australian Cotton Conference’. Gold Coast Convention and Exhibition Centre. pp. 493–507. (ACGRA: Orange, NSW)

Odeh IOA, Todd AJ, Triantafilis J (2003) Spatial prediction of soil particle-size fractions as compositional data. Soil Science 168, 501–515.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Pereira RS (2005) DesktopGarp 1.1.6. University of Kansas Biodiversity Research Center.

Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling 117, 159–164.
Crossref | GoogleScholarGoogle Scholar | open url image1

Peterson AT, Papeş M, Kluza DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Science 51, 863–868.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Peterson AT, Papeş M, Reynolds MG, Perry ND, Hanson B, Regnery RL, Hutson CL, Muizniek B, Damon IK, Carroll DS (2006) Native-range ecology and invasive potential of Cricetomys in North America. Journal of Mammalogy 87, 427–432.
Crossref | GoogleScholarGoogle Scholar | open url image1

Peterson AT, Scachetti-Pereira R, Hargrove WW (2004) Potential geographic distribution of Anoplophora glabripennis (Coleoptera: Cerambycidae) in North America. American Midland Naturalist 151, 170–178.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pickup G, Marks A (2000) Identifying large-scale erosion and deposition processes from airborne gamma radiometrics and digital elevation models in a weathered landscape. Earth Surface Processes and Landforms 25, 535–557.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

R Development Core Team (2006) ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna)

Raimundo RLG, Fonseca RL, Scachetti-Pereira R, Townsend Peterson A (2007) Native and exotic distributions of siamweed modeled using the genetic algorithm for rule-set production. Weed Science 55, 41–48.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Ripley B (2006) ‘Tree: Classification and regression trees.’ R Package Version 1.0–24.

Roura-Pascual N, Suarez AV, Gomez C, Pons P, Touyama Y, Wild AL, Peterson AT (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, 2527–2534.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stockwell D (1999) Genetic algorithms II: Species distribution modelling. In ‘Machine learning methods for ecological applications’. (Ed. A Fielding) (Kluwer Academic Publishers: Boston)

Stockwell D, Beach JH, Stewart A, Vorontsov G, Vieglais D, Pereira RS (2006) The use of the GARP genetic algorithm and internet grid computing in the Lifemapper world atlas of species biodiversity. Ecological Modelling 195, 139–145.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13, 143–158.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Mathematics and Computers in Simulation 33, 385–390.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecological Modelling 148, 1–13.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wang R, Wang YZ (2006) Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity & Distributions 12, 397–408.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wilford J , Minty B (2007) The use of airborne gamma-ray imagery for mapping soils and understanding landscape processes. In ‘Digital soil mapping: an introductory perspective’. (Eds P Lagacherie, AB McBratney, M Voltz) pp. 207–218. (Elsevier: Amsterdam)

Wilford JR, Bierwith PN, Craig MA (1997) Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology. AGSO Journal of Australian Geology & Geophysics 17, 201–216. open url image1

Young RW, Young ARM, Price DM, Wray RAL (2002) Geomorphology of the Namoi alluvial plain, northwestern New South Wales. Australian Journal of Earth Sciences 49, 509–523.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhang L, Beavis SG, Gray SD (1999) Development of a spatial database for large-scale catchment management: geology, soils and landuse in the Namo Basin, Australia. Environment International 25, 853–860.
Crossref | GoogleScholarGoogle Scholar | open url image1