Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
REVIEW

Impact of agricultural inputs on soil organisms—a review

E. K. Bünemann A D , G. D. Schwenke B and L. Van Zwieten C
+ Author Affiliations
- Author Affiliations

A School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5000, Australia.

B Tamworth Agricultural Institute, NSW Department of Primary Industries, Calala, NSW 2340, Australia.

C Wollongbar Agricultural Institute, NSW Department of Primary Industries, Wollongbar, NSW 2477, Australia.

D Corresponding author. Email: else.buenemann@ipw.agrl.ethz.ch

Australian Journal of Soil Research 44(4) 379-406 https://doi.org/10.1071/SR05125
Submitted: 30 August 2005  Accepted: 11 April 2006   Published: 27 June 2006

Abstract

External agricultural inputs such as mineral fertilisers, organic amendments, microbial inoculants, and pesticides are applied with the ultimate goal of maximising productivity and economic returns, while side effects on soil organisms are often neglected. We have summarised the current understanding of how agricultural inputs affect the amounts, activity, and diversity of soil organisms. Mineral fertilisers have limited direct effects, but their application can enhance soil biological activity via increases in system productivity, crop residue return, and soil organic matter. Another important indirect effect especially of N fertilisation is soil acidification, with considerable negative effects on soil organisms. Organic amendments such as manure, compost, biosolids, and humic substances provide a direct source of C for soil organisms as well as an indirect C source via increased plant growth and plant residue returns. Non-target effects of microbial inoculants appear to be small and transient. Among the pesticides, few significant effects of herbicides on soil organisms have been documented, whereas negative effects of insecticides and fungicides are more common. Copper fungicides are among the most toxic and most persistent fungicides, and their application warrants strict regulation. Quality control of organic waste products such as municipal composts and biosolids is likewise mandatory to avoid accumulation of elements that are toxic to soil organisms.

Additional keywords: fertiliser, compost, manure, biosolids, pesticide, soil biology.


Acknowledgments

The senior author thanks the Grains Research and Development Corporation for support while this review was compiled. Questions and comments by 2 anonymous reviewers helped to improve the manuscript. We are also grateful to Kris Broos for providing us with relevant ecotoxicological references.


References


Abaye DA, Lawlor K, Hirsch PR, Brookes PC (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. European Journal of Soil Science 56, 93–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Abbott L, Robson A (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Australian Journal of Agricultural Research 33, 389–408.
Crossref | GoogleScholarGoogle Scholar | open url image1

Accinelli C, Screpanti C, Vicari A, Catizone P (2004) Influence of insecticidal toxins from Bacillus thuringiensis subsp. kurstaki on the degradation of glyphosate and glufosinate-ammonium in soil samples. Agriculture, Ecosystems & Environment 103, 497–507.
Crossref | GoogleScholarGoogle Scholar | open url image1

Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry 33, 943–951.
Crossref | GoogleScholarGoogle Scholar | open url image1

Adediran JA, de Baets N, Mnkeni PNS, Kiekens L, Muyima NYO, Thys A (2003) Organic waste materials for soil fertility improvement in the border region of the Eastern Cape, South Africa. Biological Agriculture and Horticulture 20, 283–300. open url image1

Albiach R, Canet R, Pomares F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology 75, 43–48.
Crossref | GoogleScholarGoogle Scholar | open url image1

Alef K (1995) Soil respiration. In ‘Methods in applied soil microbiology and biochemistry’. (Eds K Alef, P Nannipieri) pp. 214–219. (Academic Press: London)

Alvarez R, Alconada M, Lavado R (1999) Sewage sludge effects on carbon dioxide—carbon production from a desurfaced soil. Communications in Soil Science and Plant Analysis 30, 1861–1866. open url image1

Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils. Soil Biology and Biochemistry 20, 107–114.
Crossref | GoogleScholarGoogle Scholar | open url image1

Amorim MJB, Rombke J, Soares AMVM (2005) Avoidance behaviour of Enchytraeus albidus: effects of benomyl, carbendazim, phenmedipham and different soil types. Chemosphere 59, 501–510.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Anderson T-H, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry 22, 251–255.
Crossref | GoogleScholarGoogle Scholar | open url image1

Angersbach S , Earp R (2004) Molecular Probes PicoGreen® Assay performed on BMG LABTECH POLARstar OPTIMA Microplate Reader. BMG LABTECH Application Note 103.

Araujo ASF, Monteiro RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52, 799–804.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm processed organic wastes on plant growth. Bioresource Technology 84, 7–14.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Avrahami S, Conrad R, Braker G (2003a) Effect of ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Applied and Environmental Microbiology 68, 5685–5692. open url image1

Avrahami S, Liesack W, Conrad R (2003b) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environmental Microbiology 5, 691–705.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Baker G, Michalk D, Whitby W, O’Grady S (2002) Influence of sewage waste on the abundance of earthworms in pastures in south-eastern Australia. European Journal of Soil Biology 38, 233–237.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barbarick KA, Doxtader KG, Redente EF, Brobst RB (2004) Biosolids effects on microbial activity in shrubland and grassland soils. Soil Science 169, 176–187.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biology and Fertility of Soils 29, 246–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Beigh GM, Dar GH, Bhat BA, Zargar MY (1998) Biological control of Fusarium root rot in common bean with Rhizobium leguminosarum. Journal of Hill Research 11, 166–170. open url image1

Belotti E (1998) Assessment of a soil quality criterion by means of a field survey. Applied Soil Ecology 10, 51–63.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Advances in Agronomy 66, 1–102. open url image1

Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems & Environment 100, 3–16.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brockwell J (2004) Abundant, cheap nitrogen for Australian farmers: a history of Australian Nodulation and Nitrogen Fixation Conferences. Soil Biology and Biochemistry 36, 1195–1204.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils 19, 269–279.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry 14, 319–329.
Crossref | GoogleScholarGoogle Scholar | open url image1

Broos K, Mertens J, Smolders E (2005) Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: as comparative study. Environmental Toxicology and Chemistry 24, 634–640.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Buerkert A, Bationo A, Dossa K (2000) Mechanisms of residue mulch-induced cereal growth increases in West Africa. Soil Science Society of America Journal 64, 346–358. open url image1

Burdman S, Sarig S, Kigel J, Okon Y (1996) Field inoculation of common bean (Phaseolus vulgaris L.) and chick pea (Cicer arietinum L.) with Azospirillum brasilense strain Cd. Symbiosis Rehovot 21, 41–48. open url image1

Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biology and Biochemistry 33, 1777–1789.
Crossref | GoogleScholarGoogle Scholar | open url image1

Buyuksonmez F, Rynk R, Hess TF, Bechinski E (2000) Occurrence, degradation and fate of pesticides during composting. Part II: occurrence and fate of pesticides in compost and composting systems. Compost Science & Utilization 8, 61–81. open url image1

Cairns J (1986) The myth of the most sensitive species. Bioscience 36, 670–672.
Crossref | GoogleScholarGoogle Scholar | open url image1

Canali S, Trinchera A, Intrigliolo F, Pompili L, Nisini L, Mocali S, Torrisi B (2004) Effect of long term addition of composts and poultry manure on soil quality of citrus orchards in Southern Italy. Biology and Fertility of Soils 40, 206–210.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cao Z, Li W, Sun Q, Ma Y, Xu Q (2000) Effect of microbial inoculation on soil microorganisms and earthworm communities: a preliminary study. Journal of Crop Production 3, 275–283.
Crossref | GoogleScholarGoogle Scholar | open url image1

Capowiez Y, Berard A (2006) Assessment of the effects of imidacloprid on the behavior of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Ecotoxicology and Environmental Safety 64, 198–206.
Crossref | PubMed |
open url image1

Chaudhuri D, Tripathy S, Veeresh H, Powell MA, Hart BR (2003) Relationship of chemical fractions of heavy metals with microbial and enzyme activities in sludge and ash-amended acid lateritic soil from India. Environmental Geology 45, 115–123.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen S-K, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology and Biochemistry 33, 1971–1980.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chen Y , De Nobili M , Aviad T (2004) Stimulatory effect of humic substances on plant growth. In ‘Soil organic matter in sustainable agriculture’. (Eds F Magdoff, RR Weil) pp. 103–130. (CRC Press: Boca Raton, FL)

Chu HY, Zhu JG, Xie ZB, Zhang HY, Cao ZH, Li ZG (2003) Effects of lanthanum on dehydrogenase activity and carbon dioxide evolution in a Haplic Acrisol. Australian Journal of Soil Research 41, 731–739.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cohen MF, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biology and Biochemistry 37, 1215–1227.
Crossref | GoogleScholarGoogle Scholar | open url image1

Colvan SR, Syers JK, O’Donnell AG (2001) Effect of long-term fertiliser use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland. Biology and Fertility of Soils 34, 258–263. open url image1

Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Applied and Environmental Microbiology 70, 6407–6413.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Contin M, Todd A, Brookes PC (2001) The ATP concentration in the soil microbial biomass. Soil Biology and Biochemistry 33, 701–704.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cortet J, Andersen MN, Caul S, Griffiths B, Joffre R, Lacroix B, Sausse C, Thompson J, Krogh PH (2006) Decomposition processes under Bt (Bacillus thuringiensis) maize: results of a multi-site experiment. Soil Biology and Biochemistry 38, 195–199.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dahlin S, Witter E, Martensson A, Turner A, Baath E (1997) Where’s the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biology and Biochemistry 29, 1405–1415.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dalby PR, Baker GH, Smith SE (1995) Glyphosate, 2,4-DB and dimethoate: effects on earthworm survival and growth. Soil Biology and Biochemistry 27, 1661–1662.
Crossref | GoogleScholarGoogle Scholar | open url image1

Daly MJ, Stewart DPC (1999) Influence of ‘effective microorganisms’ (EM) on vegetable production and carbon mineralization—a preliminary investigation. Journal of Sustainable Agriculture 14, 15–25.
Crossref | GoogleScholarGoogle Scholar | open url image1

Damodaran V, Subbian P, Marimuthu S (2004) Effect of stubble management with biological inoculants on the growth and yield of rice (Oryza sativa L.) in rice-based cropping systems. Acta Agronomica Hungarica 52, 105–108.
Crossref | GoogleScholarGoogle Scholar | open url image1

Das AC, Debnath A, Mukherjee D (2003) Effect of the herbicides oxadiazon and oxyfluorfen on phosphate solubilizing microorganisms and their persistence in rice fields. Chemosphere 53, 217–221.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Delgado A, Madrid A, Kassem S, Andreu L, del Carmen del Campillo M (2002) Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant and Soil 245, 277–286.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dick RP, Rasmussen PE, Kerle EA (1988) Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biology and Fertility of Soils 6, 159–164.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dinesh R, Dubey RP, Ganeshamurthy AN, Prasad GS (2000) Organic manuring in rice-based cropping system: effects on soil microbial biomass and selected enzyme activities. Current Science 79, 1716–1720. open url image1

Dodd JC, Thomson BD (1994) The screening and selection of inoculant arbuscular-mycorrhizal and ectomycorrhizal fungi. Plant and Soil 159, 149–158. open url image1

Domsch KH, Jagnow G, Anderson TH (1983) An ecological concept for the assessment of side-effects of agrochemicals on soil microorganisms. Residue Reviews 86, 65–105. open url image1

Drenovsky RE, Elliott GN, Graham KJ, Scow KM (2004) Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biology and Biochemistry 36, 1793–1800.
Crossref | GoogleScholarGoogle Scholar | open url image1

Dungan RS, Ibekwe AM, Yates SR (2003) Effect of propargyl bromide and 1,3-dichloropropene on microbial communities in an organically amended soil. FEMS Microbiology Ecology 43, 75–87.
Crossref |
open url image1

Edvantoro BB, Naidu R, Megharaj M, Singleton I (2003) Changes in microbial properties associated with long-term arsenic and DDT contaminated soils at disused cattle dip sites. Ecotoxicology and Environmental Safety 55, 344–351.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eijsackers H, Beneke P, Maboeta M, Louw JPE, Reinecke AJ (2005) The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicology and Environmental Safety 62, 99–111.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Endlweber K, Schadler M, Scheu S (2005) Effects of foliar and soil insecticide applications on the collembolan community of an early set-aside arable field. Applied Soil Ecology 31, 136–146.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fagbenro JA, Agboola AA (1993) Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings. Journal of Plant Nutrition 16, 1465–1483. open url image1

Filip Z, Tesarova M (2004) Microbial degradation and transformation of humic acids from permanent meadow and forest soils. International Biodeterioration & Biodegradation 54, 225–231.
Crossref | GoogleScholarGoogle Scholar | open url image1

Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza Helper Bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytologist 153, 81–89.
Crossref | GoogleScholarGoogle Scholar | open url image1

Franco I, Contin M, Bragato G, Nobili MD (2004) Microbiological resilience of soils contaminated with crude oil. Geoderma 121, 17–30.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fravel DR, Deahl KL, Stommel JR (2005) Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biological Control 34, 165–169.
Crossref | GoogleScholarGoogle Scholar | open url image1

Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist 128, 197–210.
Crossref |
open url image1

Garcia C, Hemandez T, Costa F, Polo A (1991) Humic substances in composted sewage sludge. Waste Management & Research 9, 189–194.
Crossref | GoogleScholarGoogle Scholar | open url image1

Garcia Gil JC, Plaza C, Senesi N, Brunetti G, Polo A (2004) Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biology and Fertility of Soils 39, 320–328.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gaw SK, Palmer G, Kim ND, Wilkins AL (2003) Preliminary evidence that copper inhibits the degradation of DDT to DDE in pip and stonefruit orchard soils in the Auckland region, New Zealand. Environmental Pollution 122, 1–5.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gaw SK, Wilkins AL, Kim ND, Palmer GT, Robinson P (2006) Trace element and DDT concentrations in horticultural soils from the Tasman, Waikato and Auckland regions of New Zealand. The Science of the Total Environment 355, 31–47.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gelsomino A, Cacco G (2006) Compositional shifts of bacterial groups in a solarized and amended soil as determined by denaturing gradient gel electrophoresis. Soil Biology and Biochemistry 38, 91–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ghosh AK, Bhattacharyya P, Pal R (2004) Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India. Environment International 30, 491–499.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry 30, 1389–1414.
Crossref | GoogleScholarGoogle Scholar | open url image1

Giller KE, Witter E, McGrath SP (1999) Assessing risks of heavy metal toxicity in agricultural soils: Do microbes matter? Human and Ecological Risk Assessment 5, 683–689. open url image1

Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant and Soil 232, 181–193.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gosz J , Barton L , Potter L (1978) An evaluation of New Mexico humate deposits for restoration of mine spoils. In ‘The reclamation of disturbed arid lands’. pp. 180–188. (University of New Mexico Press: Albuquerque, NM)

Graham MH, Haynes RJ (2005) Organic matter accumulation and fertilizer-induced acidification interact to affect soil microbial and enzyme activity on a long-term sugarcane management experiment. Biology and Fertility of Soils 41, 249–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Graham MH, Haynes RJ, Meyer JH (2002) Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biology and Biochemistry 34, 93–102.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grayston SJ, Germida JJ (1991) Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola. Canadian Journal of Microbiology 37, 521–529. open url image1

Griffiths BS, Bonkowski M, Roy J, Ritz K (2001) Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology 16, 49–61.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gupta V, Germida JJ (1988) Populations of predatory protozoa in field soils after 5 years of elemental S fertilizer application. Soil Biology and Biochemistry 20, 787–791.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gupta VVSR, Lawrence JR, Germida JJ (1988) Impact of elemental sulfur fertilization on agricultural soils.1. Effects on microbial biomass and enzyme activities. Canadian Journal of Soil Science 68, 463–473. open url image1

Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245, 83–93.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hao X, Chang C (2003) Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta? Agriculture, Ecosystems & Environment 94, 89–103.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hart MR, Brookes PC (1996) Soil microbial biomass and mineralisation of soil organic matter after 19 years of cumulative field applications of pesticides. Soil Biology and Biochemistry 28, 1641–1649.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hartz TK, Mitchell JP, Giannini C (2000) Nitrogen and carbon mineralization dynamics of manures and composts. HortScience 35, 209–212. open url image1

Haynes RJ, Swift RS (1988) Effects of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulfur and phosphorus in an acid soil. Biology and Fertility of Soils 6, 153–158.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heupel K (2002) Avoidance response of different collembolan species to betanal. European Journal of Soil Biology 38, 273–276.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hirsch PR (2005) Release of transgenic bacterial inoculants—rhizobia as a case study. Plant and Soil 266, 1–10.
Crossref | GoogleScholarGoogle Scholar | open url image1

Houot S, Chaussod R (1995) Impact of agricultural practices on the size and activity of the microbial biomass in a long-term field experiment. Biology and Fertility of Soils 19, 309–316.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hu S, Coleman DC, Hendrix PF, Beare MH (1995) Biotic manipulation effects on soil carbohydrates and microbial biomass in a cultivated soil. Soil Biology and Biochemistry 27, 1127–1135.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ingham ER, Thies WG (1996) Responses of soil foodweb organisms in the first year following clearcutting and application of chloropicrin to control laminated root rot. Applied Soil Ecology 3, 35–47.
Crossref | GoogleScholarGoogle Scholar | open url image1

Islam KR, Weil RR (1998) Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biology and Fertility of Soils 27, 408–416.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jensen J, Krogh PH, Sverdrup LE (2003) Effects of the antibacterial agents tiamulin, olanquindox and metronidazole and the anthelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola) and Enchytraeus crypticus (Enchytraeidae). Chemosphere 50, 437–443.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agriculture, Ecosystems & Environment 93, 267–278.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jones RE, Vere DT, Alemseged Y, Medd RW (2005) Estimating the economic cost of weeds in Australian annual winter crops. Agricultural Economics 32, 253–265.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kanungo P, Ramakrishnan B, Rajaramamohan Rao V (1998) Nitrogenaseactivity of Azospirillum sp. isolated from rice as influenced by a combination of NH4+-N and an insecticide, carbofuran. Chemosphere 36, 339–344.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kapustka LA (1999) Microbial endpoints: the rationale for their exclusion as ecological assessment endpoints. Human and Ecological Risk Assessment 5, 691–696. open url image1

Karpouzas DG, Karanasios E, Giannakou IO, Georgiadou A, Menkissoglu-Spiroudi U (2005) The effect of soil fumigants methyl bromide and metham sodium on the microbial degradation of the nematicide Cadusafos. Soil Biology and Biochemistry 37, 541–550.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry 36, 1229–1244.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kim KD, Nemec S, Musson G (1997a) Effects of composts and soil amendments on soil microflora and Phytophthora root and crown rot of bell pepper. Crop Protection 16, 165–172.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kim KY, Jordan D, McDonald GA (1997b) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils 26, 79–87.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kinney CA, Mandernack KW, Mosier AR (2005) Laboratory investigations into the effects of the pesticides mancozeb, chlorothalonil, and prosulfuron on nitrous oxide and nitric oxide production in fertilized soil. Soil Biology and Biochemistry 37, 837–850.
Crossref | GoogleScholarGoogle Scholar | open url image1

Klose S, Ajwa HA (2004) Enzyme activities in agricultural soils fumigated with methyl bromide alternatives. Soil Biology and Biochemistry 36, 1625–1635.
Crossref | GoogleScholarGoogle Scholar | open url image1

Konopka A, Oliver L, Turco RF (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology 35, 103–115.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kookana RS, Correll RL, Miller RB (1998) Assessing relative impacts of pesticides on groundwater quality using a simple index. ACIAR Proceedings Series 85, 191–198. open url image1

Kouno K, Tuchiya Y, Ando T (1995) Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biology and Biochemistry 27, 1353–1357.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krogh KA, Halling-Sorensen B, Mogensen BB, Vejrup KV (2003) Environmental properties and effects of nonionic surfactant adjuvants in pesticides: a review. Chemosphere 50, 871–901.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry 32, 1485–1498.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ladd JN, Amato M, Zhou LK, Schultz JE (1994) Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian Alfisol. Soil Biology and Biochemistry 26, 821–831.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lalande R, Gagnon B, Simard RR (2003) Papermill biosolid and hog manure compost affect short-term biological activity and crop yield of a sandy soil. Canadian Journal of Soil Science 83, 353–362. open url image1

Leita L, De Nobili M, Mondini C, Muhlbachova G, Marchiol L, Bragato G, Contin M (1999) Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biology and Fertility of Soils 28, 371–376.
Crossref | GoogleScholarGoogle Scholar | open url image1

Loureiro S, Soares AMVM, Nogueira AJA (2005) Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environmental Pollution 138, 121–131.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lovell RD, Hatch DJ (1997) Stimulation of microbial activity following spring applications of nitrogen. Biology and Fertility of Soils 26, 28–30.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lupwayi NZ, Monreal MA, Clayton GW, Grant CA, Johnston AM, Rice WA (2001) Soil microbial biomass and diversity respond to tillage and sulphur fertilizers. Canadian Journal of Soil Science 81, 577–589. open url image1

Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296, 1694–1697.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil 261, 199–208.
Crossref | GoogleScholarGoogle Scholar | open url image1

Martikainen E, Haimi J, Ahtiainen J (1998) Effects of dimethoate and benomyl on soil organisms and soil processes—a microcosm study. Applied Soil Ecology 9, 381–387.
Crossref | GoogleScholarGoogle Scholar | open url image1

Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology 67, 2354–2359.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Marx DH, Marrs LF, Cordell CE (2002) Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, agriculture, and horticulture. Dendrobiology 47, 27–40. open url image1

Massicotte HB, Tackaberry LE, Ingham ER, Thies WG (1998) Ectomycorrhizae establishment on Douglas-fir seedlings following chloropicrin treatment to control laminated-root rot disease: assessment 4 and 5 years after outplanting. Applied Soil Ecology 10, 117–125.
Crossref | GoogleScholarGoogle Scholar | open url image1

McInnes A , Haq K (2003) Contributions of rhizobia to soil nitrogen fertility. In ‘Soil biological fertility—a key to sustainable land use in agriculture’. (Eds LK Abbott, DV Murphy) pp. 99–128. (Kluwer Academic Publishers: The Netherlands)

McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000) Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research 38, 1037–1086.
Crossref | GoogleScholarGoogle Scholar | open url image1

Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environmental Pollution 109, 35–42.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Menon P, Gopal M, Parsad R (2005) Effects of chlorpyrifos and quinalphos on dehydrogenase activities and reduction of Fe3+ in the soils of two semi-arid fields of tropical India. Agriculture, Ecosystems & Environment 108, 73–83.
Crossref | GoogleScholarGoogle Scholar | open url image1

Merrington G, Rogers SL, Zwieten LV (2002) The potential impact of long-term copper fungicide usage on soil microbial biomass and microbial activity in an avocado orchard. Australian Journal of Soil Research 40, 749–759.
Crossref |
open url image1

Min DH, Islam KR, Vough LR, Weil RR (2003) Dairy manure effects on soil quality properties and carbon sequestration in alfalfa-orchardgrass systems. Communications in Soil Science and Plant Analysis 34, 781–799.
Crossref | GoogleScholarGoogle Scholar | open url image1

Miyittah M, Inubushi K (2003) Decomposition and CO2-C evolution of okara, sewage sludge, cow and poultry manure composts in soils. Soil Science and Plant Nutrition 49, 61–68. open url image1

Moharram TM, El Mohandes MA, Badawi MA (1999) Effect of inoculation and organic manure application on symbiotic N2-fixation, microbial biomass and nutrients availability in sandy soils cultivated with soybean and peanut. Annals of Agricultural Science Cairo 44, 27–40. open url image1

Monkiedje A, Ilori MO, Spiteller M (2002) Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology and Biochemistry 34, 1939–1948.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moore JM, Klose S, Tabatabai MA (2000) Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils 31, 200–210.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mosleh YY, Paris-Palacios S, Couderchet M, Vernet G (2003) Effects of the herbicide isoproturon on survival, growth rate, and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soil. Applied Soil Ecology 23, 69–77.
Crossref | GoogleScholarGoogle Scholar | open url image1

Munn KJ, Evans J, Chalk PM (2001) Nitrogen fixation characteristics of Rhizobium surviving in soils ‘equilibrated’ with sewage biosolids. Australian Journal of Agricultural Research 52, 963–972.
Crossref | GoogleScholarGoogle Scholar | open url image1

O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001) Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant and Soil 232, 135–145.
Crossref | GoogleScholarGoogle Scholar | open url image1

Panda S, Sahu SK (1999) Effects of malathion on the growth and reproduction of Drawida willsi (Oligochaeta) under laboratory conditions. Soil Biology and Biochemistry 31, 363–366.
Crossref | GoogleScholarGoogle Scholar | open url image1

Panda S, Sahu SK (2004) Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaeta) following application of three pesticides to soil. Chemosphere 55, 283–290.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55, 197–205.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Parfitt RL, Yeates GW, Ross DJ, Mackay AD, Budding PJ (2005) Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Applied Soil Ecology 28, 1–13.
Crossref | GoogleScholarGoogle Scholar | open url image1

Parham JA, Deng SP, Da HN, Sun HY, Raun WR (2003) Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biology and Fertility of Soils 38, 209–215.
Crossref | GoogleScholarGoogle Scholar | open url image1

Parham JA, Deng SP, Raun WR, Johnson GV (2002) Long-term cattle manure application in soil. I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biology and Fertility of Soils 35, 328–337.
Crossref | GoogleScholarGoogle Scholar | open url image1

Patricio FRA, Sinigaglia C, Barros BC, Freitas SS, Neto JT, Cantarella H, Ghini R (2006) Solarization and fungicides for the control of drop, bottom rot and weeds in lettuce. Crop Protection 25, 31–38.
Crossref | GoogleScholarGoogle Scholar | open url image1

Paul EA , Clark FE (1996) ‘Soil microbiology and biochemistry.’ (Academic Press: San Diego, CA)

Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC (2001) Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry 33, 1011–1019.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pernes-Debuyser A, Tessier D (2004) Soil physical properties affected by long-term fertilization. European Journal of Soil Science 55, 505–512.
Crossref | GoogleScholarGoogle Scholar | open url image1

Perrott KW, Sarathchandra SU, Dow BW (1992) Seasonal and fertilizer effects on the organic cycle and microbial biomass in a Hill Country soil under pasture. Australian Journal of Soil Research 30, 383–394.
Crossref | GoogleScholarGoogle Scholar | open url image1

Poll C, Thiede A, Wermbter N, Sessitsch A, Kandeler E (2003) Micro-scale distribution of microorganisms and microbial enzyme activities in a soil with long-term organic amendment. European Journal of Soil Science 54, 715–724.
Crossref | GoogleScholarGoogle Scholar | open url image1

Qualls RG (2004) Biodegradability of humic substances and other fractions of decomposing leaf litter. Soil Science Society of America Journal 68, 1705–1712. open url image1

Radl V, Pritsch K, Munch JC, Schloter M (2005) Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical. Environmental Pollution 137, 345–353.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Reid BJ, Papanikolaou ND, Wilcox RK (2005) Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use. Environmental Pollution 133, 447–454.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ribera D, Narbonne JF, Arnaud C, Saint-Denis M (2001) Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biology and Biochemistry 33, 1123–1130.
Crossref | GoogleScholarGoogle Scholar | open url image1

Riffaldi R, Levi-Minzi R, Saviozzi A (1983) Humic fractions of organic wastes. Agriculture, Ecosystems & Environment 10, 353–359.
Crossref | GoogleScholarGoogle Scholar | open url image1

Romantschuk M, Sarand I, Petanen T, Peltola R, Jonsson Vihanne M, Koivula T, Yrjala K, Haahtela K (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environmental Pollution 107, 179–185.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roper MM (2004) The isolation and characterisation of bacteria with the potential to degrade waxes that cause water repellency in sandy soils. Australian Journal of Soil Research 42, 427–434.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rubio R, Borie F, Schalchli C, Castillo C, Azcon R (2003) Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology 23, 245–255.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ryan M (1999) Is an enhanced soil biological community, relative to conventional neighbours, a consistent feature of alternative (organic and biodynamic) agricultural systems? Biological Agriculture and Horticulture 17, 131–144. open url image1

Ryan M, Ash J (1999) Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic). Agriculture, Ecosystems & Environment 73, 51–62.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ryan MH, Small DR, Ash JE (2000) Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Australian Journal of Experimental Agriculture 40, 663–670.
Crossref | GoogleScholarGoogle Scholar | open url image1

Saggar S, Hedley CB, Giddens KM, Salt GJ (2000) Influence of soil phosphorus status and nitrogen addition on carbon mineralization from 14C-labelled glucose in pasture soils. Biology and Fertility of Soils 32, 209–216.
Crossref | GoogleScholarGoogle Scholar | open url image1

Saini VK, Bhandari SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crops Research 89, 39–47.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sanchez-Bayo F, Baskaran S, Kennedy IR (2002) Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agriculture, Ecosystems & Environment 91, 37–57.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sannino F, Gianfreda L (2001) Pesticide influence on soil enzymatic activities. Chemosphere 45, 417–425.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

dos Santos JB, Ferreira EA, Kasuya MCM, da Silva AA, Procopio Sd O (2005) Tolerance of Bradyrhizobium strains to glyphosate formulations. Crop Protection 24, 543–547.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sarathchandra SU, Ghani A, Yeates GW, Burch G, Cox NR (2001) Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology and Biochemistry 33, 953–964.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sarathchandra SU, Lee A, Perrott KW, Rajan SSS, Oliver EHA, Gravett IM (1993) Effects of phosphate fertilizer applications on microorganisms in pastoral soil. Australian Journal of Soil Research 31, 299–309.
Crossref | GoogleScholarGoogle Scholar | open url image1

Scheuerell S, Mahaffee W (2002) Compost tea: principles and prospects for plant disease control. Compost Science & Utilization 10, 313–338. open url image1

Schwieger F, Willke B, Munch JC, Tebbe CC (1997) Ecological pre-release risk assessment of two genetically engineered, bioluminescent Rhizobium meliloti strains in soil column model systems. Biology and Fertility of Soils 25, 340–348.
Crossref | GoogleScholarGoogle Scholar | open url image1

Seghers D, Verthe K, Reheul D, Bulcke R, Siciliano SD, Verstraete W, Top EM (2003) Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microbiology Ecology 46, 139–146.
Crossref | GoogleScholarGoogle Scholar | open url image1

Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution 112, 269–283.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Siddiqui ZA, Mahmood I (1995) Role of plant symbionts in nematode management: a review. Bioresource Technology 54, 217–226.
Crossref | GoogleScholarGoogle Scholar | open url image1

Singh J, Singh DK (2005) Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere 60, 32–42.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Slattery JF, Coventry DR, Slattery WJ (2001) Rhizobial ecology as affected by the soil environment. Australian Journal of Experimental Agriculture 41, 289–298.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smith MD, Hartnett DC, Rice CW (2000) Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biology and Biochemistry 32, 935–946.
Crossref | GoogleScholarGoogle Scholar | open url image1

Somerville L , Greaves MP , Domsch KH , Verstraete W , Poole NJ , van Dijk H , Anderson JPE (1987) Recommended laboratory tests for assessing the side effects of pesticides on soil microflora. In ‘Pesticide effects on soil microflora’. (Eds L Somerville, MP Greaves) pp. 205–219. (Taylor & Francis: London)

Speir TW, van Schaik AP, Lloyd Jones AR, Kettles HA (2003) Temporal response of soil biochemical properties in a pastoral soil after cultivation following high application rates of undigested sewage sludge. Biology and Fertility of Soils 38, 377–385.
Crossref | GoogleScholarGoogle Scholar | open url image1

Spokas K, Wang D, Venterea R (2005) Greenhouse gas production and emission from a forest nursery soil following fumigation with chloropicrin and methyl isothiocyanate. Soil Biology and Biochemistry 37, 475–485.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stotzky G (1997) Soil as an environment for microbial life. In ‘Modern soil microbiology’. pp. 1–20. (Marcel Dekker Inc.: New York)

Strandberg M, Scott-Fordsmand JJ (2004) Effects of pendimethalin at lower trophic levels—a review. Ecotoxicology and Environmental Safety 57, 190–201.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Svendsen TS, Hansen PE, Sommer C, Martinussen T, Gronvold J, Holter P (2005) Life history characteristics of Lumbricus terrestris and effects of the veterinary antiparasitic compounds ivermectin and fenbendazole. Soil Biology and Biochemistry 37, 927–936.
Crossref | GoogleScholarGoogle Scholar | open url image1

Swift RS (1996) Organic matter characterization. In ‘Methods of soil analysis, Part 3. Chemical methods’. (Ed. DL Sparks) pp. 1011–1069. (SSSA and ASA: Madison, WI)

Sydney Water Annual Report (2004) Ensuring the future. Available online at: www.sydneywater.com.au/EnsuringTheFuture/Biosolids/

Tabatabai MA (1994) Soil enzymes. In ‘Methods of soil analysis, Part 2. Microbiological and biochemical properties’. (Eds RW Weaver, S Angle, P Bottomley, DF Bezdicek, S Smith, MA Tabatabai, A Wollum) pp. 775–833. (SSSA: Madison, WI)

Thomsen IK, Schjonning P, Christensen BT (2003) Mineralisation of 15N-labelled sheep manure in soils of different texture and water contents. Biology and Fertility of Soils 37, 295–301. open url image1

Tiquia SM, Lloyd J, Herms DA, Hoitink HAJ, Michel FCJ (2002) Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology 21, 31–48.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. Journal of Soil Science 33, 141–163. open url image1

Tomlin CDS (1997) ‘The pesticide manual.’ 11th edn (The British Crop Protection Council: Surrey, UK)

Trochoulias T, Broadbent P, Baigent DR (1986) Response of avocado to calcareous and organic amendments. Acta Horticulturae 175, 179–181. open url image1

Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Usman ARA, Kuzyakov Y, Stahr K (2004) Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water, Air, and Soil Pollution 158, 401–418.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vaclavik E, Halling-Sorensen B, Ingerslev F (2004) Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56, 667–676.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Valdrighi MM, Pera A, Agnolucci M, Frassinetti S, Lunardi D, Vallini G (1996) Effects of compost derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus) soil system: a comparative study. Agriculture, Ecosystems & Environment 58, 133–144.
Crossref | GoogleScholarGoogle Scholar | open url image1

Valdrighi MM, Pera A, Scatena S, Agnolucci M, Vallini G (1995) Effects of humic acids extracted from mined lignite or composted vegetable residues on plant growth and soil microbial populations. Compost Science & Utilization 3, 30–38. open url image1

Vallini G, Pera A, Agnolucci M, Valdrighi MM (1997) Humic acids stimulate growth and activity of in vitro tested axenic cultures of soil autotrophic nitrifying bacteria. Biology and Fertility of Soils 24, 243–248.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vallini G, Pera A, Avio L, Valdrighi MM, Giovannetti M (1993) Influence of humic acids on laurel growth, associated rhizospheric microorganisms, and mycorrhizal fungi. Biology and Fertility of Soils 16, 1–4.
Crossref | GoogleScholarGoogle Scholar | open url image1

Van Zwieten L, Ayres MR, Morris SG (2003) Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environmental Pollution 124, 331–339.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Van Zwieten L, Rust J, Kingston T, Merrington G, Morris S (2004) Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. The Science of the Total Environment 329, 29–41.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19, 703–707.
Crossref | GoogleScholarGoogle Scholar | open url image1

Villar MC, Petrikova V, Diaz Ravina M, Carballas T (2004) Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma 122, 73–82.
Crossref | GoogleScholarGoogle Scholar | open url image1

Visser S (1985) Physiological action of humic substances on microbial cells. Soil Biology and Biochemistry 17, 457–462.
Crossref | GoogleScholarGoogle Scholar | open url image1

Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67, 235–248.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews 67, 321–358. open url image1

Wells AT, Chan KY, Cornish PS (2000) Comparison of conventional and alternative vegetable farming systems on the properties of a yellow earth in New South Wales. Agriculture, Ecosystems & Environment 80, 47–60.
Crossref | GoogleScholarGoogle Scholar | open url image1

Westergaard K, Muller AK, Christensen S, Bloem J, Sorensen SJ (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biology and Biochemistry 33, 2061–2071.
Crossref | GoogleScholarGoogle Scholar | open url image1

Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany 82, 1198–1227.
Crossref | GoogleScholarGoogle Scholar | open url image1

Whiteley GM, Pettit C (1994) Effect of lignite humic acid treatment on the rate of decomposition of wheat straw. Biology and Fertility of Soils 17, 18–20.
Crossref | GoogleScholarGoogle Scholar | open url image1

Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiology Ecology 47, 129–141.
Crossref | GoogleScholarGoogle Scholar | open url image1

Witter E, Mårtensson AM, Garcia FV (1993) Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biology and Biochemistry 25, 659–669.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wu T, Schoenau JJ, Li F, Qian P, Malhi SS, Shi Y, Xu F (2004) Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil and Tillage Research 77, 59–68.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yang YJ, Dungan RS, Ibekwe AM, Valenzuela-Solano C, Crohn DM, Crowley DE (2003) Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils 38, 273–281.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zaller JG, Kopke U (2004) Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biology and Fertility of Soils 40, 222–229.
Crossref | GoogleScholarGoogle Scholar | open url image1