Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Occurrence of magnetite in the sand fraction of an Oxisol in the Brazilian savanna ecosystem, developed from a magnetite-free lithology

J. H. M. Viana A F , P. R. C. Couceiro B C , M. C. Pereira B , J. D. Fabris B , E. I. Fernandes Filho E , C. E. G. R. Schaefer E , H. R. Rechenberg D , W. A. P. Abrahão E and E. C. Mantovani A
+ Author Affiliations
- Author Affiliations

A Embrapa Milho e Sorgo, Caixa Postal 285, 35701-970 Sete Lagoas, Minas Gerais, Brazil.

B Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.

C Permanent address: Departamento de Química, ICE, Universidade Federal do Amazonas, 69077-000 Manaus, Amazonas, Brazil.

D Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, Cidade Universitária, 05315-970 São Paulo, São Paulo, Brazil.

E Departamento de Solos, Universidade Federal de Viçosa, MG 36571-000, Brazil.

F Corresponding author. Email: jherbert@cnpms.embrapa.br

Australian Journal of Soil Research 44(1) 71-83 https://doi.org/10.1071/SR05034
Submitted: 10 March 2005  Accepted: 29 November 2005   Published: 10 February 2006

Abstract

It is relatively well established from many pedogenetic studies that, in deeply weathered Oxisols from Central Brazil, magnetite or maghemite are either inherited or transformed from magnetite of the mafic parent material. However, no similar pedogenetic pathways have been reported in the literature for other lithologies, such as limestone and pelitic rocks (shales and slates) of the Bambuí Group in Brazil. In these sedimentary, non-mafic lithologies, magnetic minerals are not likely to occur. Despite that, magnetic nodules were identified in a representative Oxisol pedon developed on this pedodomain, under savanna (Cerrado). Magnetic and non-magnetic fractions of nodules were separated with a hand magnet. Chemical and mineralogical compositions of these nodules were determined by conventional chemical methods, powder X-ray diffractometry (XRD), and 298 K Mössbauer spectroscopy. For the magnetic fraction, containing up to 84 dag/kg of Fe2O3 but also relatively rich in Al, Ti, Cr, and Si, Mössbauer measurements were also made at 4.2 K, without and with an externally applied magnetic field of 8 Tesla, and at 100 K. Mössbauer results and structural Rietveld refinement of the XRD data consistently suggest that the iron oxide mineralogy corresponds to approximately equivalent proportions of hematite and a partially oxidised magnetite, containing 3 dag/kg of iron as FeO. Laboratory tests were conducted in an attempt to produce magnetic material by heating this non-magnetic fraction. The sample was wrapped in filter paper and heated at 300°C for 30 min, and the results were compared with the naturally occurring magnetic nodules. The saturation magnetisation value of the thermally treated sample was found to be σ = 7 J/T.kg, well below σ = 16 J/T.kg of the magnetic soil nodules. Mössbauer and XRD results indicate that the iron oxide mineralogy of this laboratory-produced magnetic sample also corresponds to a mixture of partially oxidised magnetite and hematite. Two other parts of the same non-magnetic, naturally hematite-rich precursor were mixed with charcoal, to act as reducing agent, and oven-heated at 450°C and 600°C, respectively, for 1 h, producing increasing reduction of the hematite to magnetite. These laboratory simulations support the model in which magnetite in these hematite-rich nodules was formed under the influence of seasonal burning regimes of the covering vegetation, followed by partial re-conversion of the magnetite particles to hematite under long-term atmospheric exposure to air. This model is consistent with a long-term, seasonal fire history, assumed for the genesis of the Cerrado ecosystem in the Central Brazil, although a wider validity for the entire Bambuí Group area remains open.

Additional keywords: Mössbauer spectroscopy, Rietveld, iron oxides, Bambuí Group.


Acknowledgments

We thank the Brazilian National Council for Scientific and Technological Development (CNPq), FAPEMIG, and CAPES (Brazil) for the financial support. This work was in the part carried out under the auspices of EMBRAPA Program PRODETAB–030-01/99 and SEP-12.1999.021. We also thank Mr Robson Cota of the technical staff of CDTN-CNEN (Brazil) for the ICP/ analyses.


References


Anand RR, Gilkes RJ (1987) Iron oxides in lateritic soils from Western Australia. Journal of Soil Science. 38, 607–622. open url image1

Auerswald K, Friedl J, Litaor I, Stanjek H (2001) Iron oxide mineralogy of a semi-arid wetland. Mitteilung Deutsche Bodenkundliche Gesellschaft. 96, 677–678. open url image1

Barbosa LCA, Fabris JD, Resende M, Coey JMD, Goulart A, Cadogan J, Galvão Da Silva E (1991) Mineralogia e química de um Latossolo Câmbico desenvolvido de rocha pelítica do Grupo Bambuí (Mineralogy and chemistry of a Cambic Latosol developed from a pelitic rock from the Bambuí Group, state of Minas Gerais, Brazil). Revista Brasileira de Ciência do Solo [in Portuguese] 15, 259–266. open url image1

Barinov N, Landa A (1950) Metalurgia y metalografía. Editorial Mir, Moscow.

Blake RL, Hessevick RE, Zoltai T, Finger LW (1966) Refinement of the hematite structure. The American Mineralogist 51, 123–129. open url image1

Bray, JL (1929). ‘The principles of metallurgy.’ (Ginn and Company: Boston, MA)

Brewer R, Sleeman JR (1964) Glaebules, their definition, classification and interpretation. Journal of Soil Science 15, 66–80. open url image1

Caglioti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nuclear Instruments and Methods 3, 223–228.
Crossref | GoogleScholarGoogle Scholar | open url image1

Coey JMD, Cugat O, Mccauley J, Fabris JD (1992) A portable soil magnetometer. Revista de Física Aplicada e Instrumentação 7, 25–30. open url image1

Cornell, RM ,  and  Schwertmann, U (2003). ‘The iron oxides.’ (VCH Publishers: New York)

Coventry RJ, Taylor RM, Fitzpatrick RW (1983) Pedological significance of the gravels in some red and grey earths of central north Queensland. Australian Journal of Soil Research 21, 219–240.
Crossref | GoogleScholarGoogle Scholar | open url image1

CPRM (1994) Informações básicas para a gestão territorial; região de Sete Lagoas–Lagoa Santa. Caracterização geomorfológica. (in Portuguese). Companhia de Pesquisa de Recursos Minerais/Fundação Centro Tecnológico de Minas Gerais, Belo Horizonte (in Portuguese).

Crockford RH, Willett IR (1995) Magnetic properties of two soils during reduction, drying and re-oxidation. Australian Journal of Soil Research 33, 597–609.
Crossref | GoogleScholarGoogle Scholar | open url image1

Crockford RH, Willett IR (1997) The magnetic properties of a stratigraphic section of a sedimentary soil in New South Wales, Australia. CSIRO Technical Report 22/97 (part 1), CSIRO Land and Water, Canberra.

Crockford RH, Willett IR (2001) Application of mineral magnetism to describe profile development of toposequences of a sedimentary soil in south-eastern Australia. Australian Journal of Soil Research 39, 927–949.
Crossref | GoogleScholarGoogle Scholar | open url image1

Curi N (1983) Lithosequence and toposequence of Oxisols from Goiás and Minas Gerais states, Brazil. PhD thesis, Purdue University, West Laffayette, USA.

Curi N, Franzmeier DP (1987) Effect of parent rock on chemical and mineralogical properties of sole oxisols in Brazil. Soil Science Society of America Journal 51, 153–158. open url image1

Doriguetto AC, Fernandes NG, Persiano AIC, Nunes Filho E, Grenèche JM, Fabris JD (2003) Characterization of a natural magnetite. Physics and Chemistry of Minerals 30, 249–255. open url image1

EMBRAPA (1972) Estudo expedito dos solos da região sul de Minas Gerais, partes do Alto São Francisco e Campos das Vertentes, para fins de classificação, correlação e legenda preliminar. Recife. DNPEA Boletim técnico No. 24. in Portuguese.

EMBRAPA (1997). ‘Manual de métodos de análise de solo.’ 2nd edn . (EMBRAPA–CNPS: Rio de Janeiro, Brazil)

EMBRAPA (1999). ‘Sistema Brasileiro de Classificação de Solos.’ (Embrapa Produção de Informação: Rio de Janeiro, Brazil)

EMBRAPA (1983) Levantamento de reconhecimento de baixa intensidade dos solos e aptidão agrícola das terras de parte da região geoeconômica de Brasília. Rio de Janeiro. EMBRAPA–SNLCs Boletim ténico No. 24 in Portuguese.

EMBRAPA (1983) Levantamento de reconhecimento de média intensidade dos solos e aptidão agrícola das terras da margem direita do Rio Paranã–Estado de Goiás. Rio de Janeiro. EMBRAPA–SNLCS Boletim ténico No. 23 in Portuguese.

EPAMIG (1978) Levantamento de reconhecimento detalhado dos solos da área sob influência do reservatório de Três Marias, Minas Gerais. Belo Horizonte, SNLCS. Boletim Ténico do SNLCS. No. 57 in Portuguese.

Fabris JD, Coey JMDE, Mussel WN (1998) Magnetic soils from mafic lithodomains in Brazil. Hyperfine Interactions 113, 249–258.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fabris JD, de Jesus Filho MF, Coey JMD, Mussel WN, Goulart AT (1997) Iron-rich spinels from Brazilian soils. Hyperfine Interactions 110, 23–32.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ferreira SAD, Santana DP, Fabris JD, Curi N, Nunes Filho E, Coey JMD (1994) Relações entre magnetização, elementos-traço e litologia de duas seqüências de solos, do estado de Minas Gerais (Magnetisation, trace elements and litology in two soil sequences from Minas Gerais State, Brazil). Revista Brasileira de Ciência do Solo, No.18, pp. 167–174. (in Portuguese).

Fontes MPF, de Oliveira TS, da Costa LM, Campos AAGE (2000) Magnetic separation and evaluation of magnetisation of Brazilian soils from different parent materials. Geoderma 96, 81–99.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fontes MPF, Bowen LH, Weed SB (1991) Iron-oxides in selected Brazilian Oxisols. 2. Mössbauer studies. Soil Science Society of America Journal 55, 1150–1155. open url image1

Goodman BA (1996) Mössbauer spectroscopy. ‘Clay mineralogy: spectrometric and chemical determinative methods’. Ch 3. (Ed. MJ Wilson) pp. 68–119. (Chapman & Hall: London)

Goulart AT, Fabris JD, de Jesus Filho MF, Coey JMD, da Costa GM, de Grave E (1998) Iron oxides in a soil developed from basalt. Clays and Clay Minerals 46, 369–378. open url image1

Hill RJ, Craig JR, Gibbs GV (1979) Systematics of the spinel structure type. Physics and Chemistry of Minerals 4, 317–339.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jacomine PTK, Cavalcanti AC, Ribeiro MR, Montenegro JO, Burgos N, Melo Filho HFR, Formiga RA (1976) Levantamento exploratório—reconhecimento de solos da margem esquerda do Rio São Francisco, estado da Bahia. Recife. EMBRAPA–SNLCS Bolteim ténico No. 38 in Portuguese.

JCPDS (1980). ‘Mineral powder diffraction files data book.’ (Joint Committee on Powder Diffraction Standards: Swarthmore, PA)

Jeffery, PG ,  and  Hutchison, D (1981). ‘Chemical methods of rock analysis.’ (Pergamon: London)

de Jesus Filho MF, Fabris JD, Goulart AT, Coey JMD, Ferreira BA, Pinto MCF (1995) Ilmenite and magnetite of a tholeiitic basalt. Clays and Clay Minerals 43, 641–642. open url image1

Kämpf N, Schwertmann U (1998) Avaliação da estimativa de substituição de Fe por Al em hematitas de solos (Evaluation of Al for Fe substitution in soil hematites). Revista Brasileira de Ciência do Solo [in Portuguese] 22, 209–213. open url image1

Kaye, GWC ,  and  Laby, TH (1973). ‘Tables of physical and chemical constants.’ (Longman: London)

Ketterings QM, Bigham JM, Laperche V (2000) Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Science Society of America Journal 64, 1108–1117. open url image1

Klug, HP ,  and  Alexander, LE (1974). ‘X-ray diffraction procedures for polycrystalline and amorphous materials.’ (John Wiley & Sons: New York)

Linford NT, Canti MG (2001) Geophysical evidence for fires in antiquity: preliminary results from an experimental study. Archaeological Prospection 8, 211–225.
Crossref | GoogleScholarGoogle Scholar | open url image1

McClean RG, Kean WF (1993) Contributions of wood ash magnetism to archaeomagnetic properties of fire pits and hearths. Earth and Planetary Science Letters 119, 387–394.
Crossref | GoogleScholarGoogle Scholar | open url image1

Melo DF, Fontes MPF, Novais RF, Singh B, Schaefer CEGR (2001) Características dos óxidos de ferro e de alumínio de diferentes classes de solos (Iron and aluminum oxides from different Brazilian soils). Revista Brasileira de Ciência do Solo [in Portuguese] 25, 19–32. open url image1

Ministério da Agricultura, Centro Nacional de Ensino e Pesquisas Agronômicas (1962). ‘Levantamento de reconhecimento dos solos sob influência do reservatório de Furnas.’ (CNEPA: Rio de Janeiro)

Ministério da Agricultura, Divisão de Pesquisa Pedológica–DNPEA, SUDENE/DRN, Divisão de Agrologia (1980) Estudo expedito de solos nas partes central e oeste do estado da Bahia para fins de classificação e correlação. EMBRAPA-SNLCS Boletim técnico No.72, Rio de Janeiro (in Portuguese).

Morrish AH, Haneda K, Schurer PJ (1976) Surface magnetic structure of small γ-Fe2O3 particles. Journal of Physics – Paris 12(C6), 301–305. open url image1

Murad E, Schwertmann U (1986) Influence of aluminium and crystal size on the room-temperature Mössbauer-spectrum of hematite. Clays and Clay Minerals 34, 1–6. open url image1

de Oliveira MTG, Formoso MLL, da Costa MI, Meunier A (2002) The titanomagnetite to titanomaghemite conversion in a weathered basalt profile from southern Parana Basin, Brazil. Clays and Clay Minerals 50, 478–493.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pankhurst QA, Pollard RJ (1990) Mössbauer spectra of antiferromagnetic powders in applied fields. Journal of Physics Condensed Matter 2, 7329–7337.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pinto MCF, Fabris JD, Goulart AT, Santana GP (1998) Pedogenetic instability of magnetite in mafic lithology. Hyperfine Interactions C 3, 325–327. open url image1

Pinto MCF, de Jesus Filho MF, Goulart AT, Fabris JD, Santana GP (1997) Pedogenic instability of magnetite from amphibolite. Hyperfine Interactions C 2, 61–66. open url image1

Rawitscher F (1948) The water economy of the vegetation of the ‘Campos Cerrados’ in southern Brazil. Journal of Ecology 36, 237–268. open url image1

Resende M (1976) Mineralogy, chemistry, morphology and geomorphology of some soils of the Central Plateau of Brazil. PhD thesis, Purdue University, West Laffayette, USA.

Resende M, Allan JE, Coey JMD (1986) The magnetic soils of Brazil. Earth and Planetary Science Letters 78, 322–326.
Crossref | GoogleScholarGoogle Scholar | open url image1

Resende M, Santana DP, Franzmeier DP, Coey JMD (1988) Magnetic properties of Brazilian Oxisols. ‘International Soil Classification Workshop Proceedings’. . (EMBRAPA-SNLCS, Soil Management Support Services, Soil Conservation (USDA, University of Puerto Rico))


Roshchin AV, Roshchin VE (2003) Diffusion of anions and cations in oxide crystal lattices during the reduction and oxidation of metals. Russian Metallurgy 1, 3–8. open url image1

Schaefer CEGR (2001) Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Australian Journal of Soil Research 39, 909–926.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schwertmann U, Fechter H (1984) The influence of aluminum on iron oxides: XI. Aluminum-substituted maghemite in soils and its formation. Soil Science Society of America Journal 48, 1462–1463. open url image1

Schwertmann U, Friedl J, Stanjek H (1999) From Fe(III) ions to ferrihydrite and then to hematite. Journal of Colloid and Interface Science 209, 215–223.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Singh B, Gilkes RJ (1996) Nature and properties of iron rich glaebules and mottles from some south-west Australian soils. Geoderma 71, 95–120.
Crossref | GoogleScholarGoogle Scholar | open url image1

Soil Survey Staff (1998). ‘Keys to Soil Taxonomy.’ 8th edn. Natural Resources Conservation Services, U.S. Department of Agriculture. (U.S. Government Printing Office: Washington, DC)

Son S, Swaminathan R, McHenry ME (2003) Structure and magnetic properties of rf thermal plasma synthesized Mn and Mn–Zn ferrite nanoparticles. Journal of Applied Physics 93, 7495–7497.
Crossref | GoogleScholarGoogle Scholar | open url image1

Young, RA (1995). ‘The Rietveld method.’ (Oxford University Press: Oxford, UK)

Young RA, Wiles DB (1982) Profile shape functions in Rietveld refinements. Journal of Applied Crystallography 15, 430–438.
Crossref | GoogleScholarGoogle Scholar | open url image1