Hydrolysable carbohydrate in tropical soils under adjacent forest and savanna vegetation in Lamto, Côte d’Ivoire
Hassan Bismarck Nacro A D , Marie Christine Larré-Larrouy B , Christian Feller B and Luc Abbadie CA Present address: Institut du Développement Rural, Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso.
B Laboratoire Matière Organique des Sols Tropicaux, IRD-CIRAD, BP 64501, Montpellier Cedex 5, France.
C Laboratoire d’Ecologie, UMR.7625, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France.
D Corresponding author. Email address: nacrohb@yahoo.fr
Australian Journal of Soil Research 43(6) 705-711 https://doi.org/10.1071/SR03134
Submitted: 3 September 2003 Accepted: 2 May 2005 Published: 22 September 2005
Abstract
Carbohydrates represent 5–25% of the organic matter in soils. They constrain microbial activities and mineral nutrient production in soil and also reflect the whole microorganism community dynamic. The objective of this study was to determine the contents and composition of hydrolysable carbohydrates in soils collected in a forest–savanna mosaic landscape in the region of Lamto (Côte d’Ivoire). Capillary gas chromatography was used to identify and determine carbohydrates in soil profile under 4 tropical ecosystems: gallery and plateau forests, and grass and shrub tree savannas. Forest soils were higher in organic matter than savanna soils (0.50–2.96% C v. 0.53–1.22% C). The carbohydrate-C content of soils, expressed as percentage of total soil organic C, was low, a likely consequence of the tropical climate that promotes a rapid decomposition of surface plant debris. The carbohydrate-C content was higher under savanna soils (5–7%) than under forest soils (3–4%). Glucose, ribose, mannose, xylose, and galactose were the 5 most abundant extractable monosaccharides in all soils. Between them, only xylose and ribose are controlled by the vegetation type. The [(galactose + mannose) : (arabinose + xylose)] and [mannose : xylose] ratios suggested that most soil sugars derive from microbial biomass. The large abundance of microbial carbohydrates indicates intense microbial activities in the soil, and then rapid decomposition of soil organic matter favoured by the long wet season, with high temperatures and soil water availability at the site study. Results suggest clearly that the climate likely controls the amount and composition of carbohydrates in Lamto soils.
Additional keywords: monosaccharide, soil microorganisms, soil organic matter, microbially derived compounds, carbon, nitrogen.
Acknowledgments
The authors acknowledge critical and helpful comments by the editor and 2 anonymous reviewers. We gratefully acknowledge R. Vuattoux, Director of the Lamto Ecological Research Station, for all the facilities he offered in the field. We thank also D. Benest and G. Guillaune for efficient help during laboratory experiments. This study was financially supported by the SALT programme (CNRS, Programme Environnement, Vie et Sociétés) directed by J. C. Menaut.
Abbadie L, Lensi R
(1990) Carbon and nitrogen mineralization and denitrification in a humid savanna of West Africa (Lamto, Côte d’Ivoire). Acta Œcologica 11, 717–728.
Amelung W,
Flach KW, Zech W
(1999) Neutral and acidic sugars in particle-size fractions as influenced by climate. Soil Science Society of America Journal 63, 865–873.
Anne P
(1945) Sur le dosage rapide du carbone organique des sols. Annales Agronomiques 2, 162–172.
Appel TR,
Pfanschilling R, Xu FL
(1999) Amino acids and amino sugars extracted by EUF from a sandy soil incubated with green manure, bacterial biomass or cellulose. Journal of Plant Nutrition and Soil Science 162, 615–622.
| Crossref | GoogleScholarGoogle Scholar |
Cheshire, MV (1979).
Dalal RC, Henry RJ
(1988) Cultivation effects on carbohydrate contents of soil and fractions. Soil Science Society of America Journal 52, 1361–1365.
FAO (1989).
Feller C
(1994) La matière organique dans les sols tropicaux à argile 1 : 1. Recherche de compartments organiques fonctionnels. Une approche granulométrique. Doctorat ès Sciences Naturelles, Université Louis Pasteur, Strasbourg.
Feller C,
François C,
Villemin G,
Portal JM,
Toutain F, Morel JL
(1991) Nature des matières organiques associées aux fractions argileuses d’un sol ferrallitique. Comptes Rendus de l’Académie des Sciences Paris 312, 1491–1497.
Folsom BL,
Wagner GH, Scrivner CL
(1974) Comparison of soil carbohydrate in several prairie and forest soils by gas-liquid chromatography. Soil Science Society of America Proceedings 38, 305–309.
Guggenberger G, Zech W
(1999) Soil organic matter composition under primary forest, pasture and secondary forest succession, Region Huerta Norte, Costa Rica. Forest Ecology and Management 124, 93–104.
| Crossref | GoogleScholarGoogle Scholar |
Jones MJ
(1973) The organic matter content of the savanna soils of West Africa. Journal of Soil Science 24, 42–53.
Kiem R, Kögel-Knabner I
(2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology and Biochemistry 35, 101–118.
| Crossref | GoogleScholarGoogle Scholar |
Kouakoua E,
Larré-Larrouy MC,
Barthès B,
De Freitas PL,
Neves C,
Sala GH, Feller C
(1999) Relations entre stabilité de l’agrégation et matière organique totale et soluble à l’eau chaude dans les sols ferralitiques argileux (Congo, Brésil). Canadian Journal of Soil Science 79, 561–569.
Larré-Larrouy MC, Feller C
(1997) Determination of carbohydrates in two ferralitic soils and their particle-size fractions: analysis by capillary gas chromatography after derivation by silylation. Soil Biology and Biochemistry 29, 1585–1589.
| Crossref | GoogleScholarGoogle Scholar |
Mary B,
Fresneau C,
Morel JL, Mariotti A
(1993) C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biology and Biochemistry 25, 1005–1014.
| Crossref | GoogleScholarGoogle Scholar |
Menaut JC
(1974) Chute de feuilles et apport au sol de litière par les ligneux dans une savane préforestière de Côte d’Ivoire. Bulletin d’Ecologie 5, 27–39.
Menaut JC, César J
(1979) Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60, 1197–1210.
Möller A,
Kaiser K, Zech W
(2002) Lignin, carbohydrate, and amino suggar distribution and transformation in the tropical highlands soils of northern Thailand under cabbage cultivation, Pinus reforestation, secondary forest, and primary forest. Australian Journal of Soil Research 40, 977–998.
| Crossref |
Mordelet P
(1993) Influence des arbres sur la strate herbacée d’une savane humide (Lamto, Côte d’Ivoire). Doctorat de l’Université Paris VI.
Murata T,
Tanaka H,
Yasue S,
Hamada R,
Sakagami K, Kurokawa Y
(1999) Seasonal variations in soil microbial contrent and soil neutral sugar composition in grassland in the Japanese temperate zone. Applied Soil Ecology 11, 253–259.
| Crossref | GoogleScholarGoogle Scholar |
Murayama S
(1977) Saccharides in some Japanese paddy soils. Journal of Soil Science and Plant Nutrition 23, 479–489.
Nacro HB,
Benest D, Abbadie L
(1996) Distribution of microbial activities and organic matter according to particle size in a humid savanna soil (Lamto, Côte d’Ivoire). Soil Biology and Biochemistry 28, 1687–1697.
| Crossref | GoogleScholarGoogle Scholar |
Nacro HB
(1997) Hétérogénéité fonctionnelle de la matière organique dans un sol de savanne humide (Lamto, Côte d’Ivoire): caractérisation chimique et étude, in vitro, des activités microbiennes de minéralisation du carbone et de l’azote. Thèse de Doctorat, Université Paris VI.
Oades JM
(1972) Studies on soil polysaccharides. III. Compositions of polysaccharides in some Australian soils. Australian Journal of Soil Research 10, 113–126.
| Crossref | GoogleScholarGoogle Scholar |
Oades JM
(1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 76, 319–337.
Puget P,
Angers DA, Chenu C
(1998) Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology and Biochemistry 31, 55–63.
| Crossref | GoogleScholarGoogle Scholar |
Rodionov A,
Amelung W,
Urusevskaja I, Zech W
(1999) Climatic effect on lignin and polysaccharides in particle-size fractions of zonal steppe soils, Russia. Journal of Soil Science and Plant Nutrition 162, 231–238.
| Crossref | GoogleScholarGoogle Scholar |
Sall S,
Brauman A,
Fall S,
Rouland C,
Mimabi E, Chotte J-L
(2002) Variation in the distribution of monosaccharides in soils fractions in the mounds of termites with different feeding habits (Senegal). Biology and Fertility of Soils 36, 232–239.
| Crossref | GoogleScholarGoogle Scholar |
SAS Institute Inc. (1990).
Solomon D,
Fritzsche F,
Tekalign M,
Lehmann J, Zech W
(2002) Soil organic matter composition in the Subhumid Ethiopian highlands as influenced by deforestation and agricultural management. Soil Science Society of America Journal 66, 68–82.
Steinberger Y,
Lavee H,
Barness G, Davidor M
(1999) Soil carbohydrates along a topoclimatic gradient in a Judean desert ecosystem. Land Degradation and Development 10, 523–530.
| Crossref | GoogleScholarGoogle Scholar |
Turchenek LW, Oades JM
(1979) Fractionation of organo-mineral complexes by sedimentation and density techniques. Geoderma 21, 311–344.
| Crossref | GoogleScholarGoogle Scholar |