Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

A framework phylogeny of the diverse guinea-flowers (Hibbertia, Dilleniaceae) using high-throughput sequence data

Timothy A. Hammer https://orcid.org/0000-0003-3816-7933 A B * , Ed Biffin https://orcid.org/0000-0002-6582-716X B , Kor-jent van Dijk https://orcid.org/0000-0002-6521-2843 A , Kevin R. Thiele https://orcid.org/0000-0002-6658-6636 C and Michelle Waycott https://orcid.org/0000-0002-0822-0564 A B
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

B State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA 5000, Australia.

C Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, ACT 2601, Australia.

* Correspondence to: timothy.hammer@adelaide.edu.au

Handling Editor: Caroline Puente-Lelievre

Australian Systematic Botany 38, SB24009 https://doi.org/10.1071/SB24009
Submitted: 6 May 2024  Accepted: 15 February 2025  Published: 20 March 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Hibbertia is the largest genus in Dilleniaceae and one of the largest Australian plant genera, with ~350 current and more than 100 known undescribed species in Australia. We present the first published phylogeny based on rigorous sampling of Hibbertia. As part of Genomics for Australian Plants Stage II, 95 Hibbertia species were newly sequenced using Angiosperm353, OzBaits nuclear and OzBaits plastid bait sets, resulting in 402 nuclear and 79 plastid loci that were subsampled to retain the most phylogenetically useful 300 and 60 loci respectively. Nuclear and plastid phylogenies were reconstructed using concatenation and coalescent approaches, and further analysed using Quartet Sampling. We found that Hibbertia and the four subgenera within the genus are robustly supported as monophyletic and recovered 14 major clades, supported in both datasets, within the two largest subgenera (subg. Hemistemma and subg. Hibbertia). However, many relationships between these major clades are unresolved and discordant. Some incongruence was also detected between the plastid and nuclear trees. Discordance was particularly high in the largest eastern Australian clade of subg. Hemistemma. Possible causes of this discordance, and relationships between and within these major clades, are discussed.

Keywords: Angiosperm353, Dilleniaceae, discordance, Genomics for Australian Plants, Hibbertia, hybrid-capture, incongruence, phylogenomics.

References

Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 1-20.
| Crossref | Google Scholar |

Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology 60, 685-699.
| Crossref | Google Scholar | PubMed |

Baker WJ, Bailey P, Barber V, Barker A, Bellot S, Bishop D, Botigué LR, Brewer G, Carruthers T, Clarkson JJ, Cook J, Cowan RS, Dodsworth S, Epitawalage N, Françoso E, Gallego B, Johnson MG, Kim JT, Leempoel K, Maurin O, McGinnie C, Pokorny L, Roy S, Stone M, Toledo E, Wickett NJ, Zuntini AR, Eiserhardt WL, Kersey PJ, Leitch IJ, Forest F (2022) A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Systematic Biology 71, 301-319.
| Crossref | Google Scholar | PubMed |

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.
| Crossref | Google Scholar | PubMed |

Cheng C, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. The Plant Journal 89, 789-804.
| Crossref | Google Scholar | PubMed |

Chernomor O, von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997-1008.
| Crossref | Google Scholar | PubMed |

Di Franco A, Poujol R, Baurain D, Philippe H (2019) Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evolutionary Biology 19, 21.
| Crossref | Google Scholar | PubMed |

Doyle JJ (2022) Defining coalescent genes: theory meets practice in organelle phylogenomics. Systematic Biology 71, 476-489.
| Crossref | Google Scholar | PubMed |

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321.
| Crossref | Google Scholar | PubMed |

Hammer TA (2022) Updated nomenclature and an identification key for Hibbertia subg. Pachynema (Dilleniaceae), and description of a new species from the Northern Territory. Swainsona 36, 153-160.
| Google Scholar |

Hammer TA (2023a) Hibbertia fulva (Dilleniaceae), a new species from the Northern Territory in the H. banksii species group. Swainsona 37, 71-74.
| Google Scholar |

Hammer TA (2023b) Hibbertia radians (Dilleniaceae), a new combination from South Australia. Swainsona 37, 63-70.
| Google Scholar |

Hammer TA, Thiele KR (2022) Hibbertia Andrews. In ‘Flora of Australia’. (Ed. PG Kodela) (Australian Biological Resources Study, Department of Climate Change, the Environment and Water: Canberra, ACT, Australia) Available at https://profiles.ala.org.au/opus/foa/profile/Hibbertia [Verified 1 April 2024]

Hammer TA, Thiele KR (2024) New combinations of Hibbertia (Dilleniaceae) segregated from H. hibbertioides and H. glomerata. Nuytsia 35, 31-45.
| Crossref | Google Scholar |

Hammer TA, Toelken HR, Thiele KR (2019) Hibbertia advena (Dilleniaceae), a new and rare species from Queensland with transcontinental affinities. Australian Journal of Taxonomy 9, 1-5.
| Crossref | Google Scholar |

Horn JW (2005) The phylogenetics and structural botany of Dilleniaceae and Hibbertia Andrews. PhD dissertation, Duke University, Durham, NC, USA.

Horn JW (2007) Dilleniaceae. In ‘Flowering Plants Eudicots. The Families and Genera of Vascular Plants. Vol. 9’. (Ed. K Kubitzki) pp. 132–154. (Springer)

Horn JW (2009) Phylogenetics of Dilleniaceae using sequence data from four plastid loci (rbcL, infA, rps4, rpl16 intron). International Journal of Plant Sciences 170, 794-813.
| Crossref | Google Scholar |

Jackes BR (2018) Hibbertia ferox Jackes (Dilleniaceae), a new species from the White Mountains area of north Queensland. Austrobaileya 10, 282-285.
| Crossref | Google Scholar |

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK, Baker WJ, Wickett NJ (2019) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68, 594-606.
| Crossref | Google Scholar | PubMed |

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Keller O, Odronitz F, Stanke M, Kollmar M, Waack S (2008) Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. BMC Bioinformatics 9, 278.
| Crossref | Google Scholar | PubMed |

Kong H, Condamine FL, Yang L, Harris AJ, Feng C, Wen F, Kang M (2022) Phylogenomic and macroevolutionary evidence for an explosive radiation of a plant genus in the Miocene. Systematic Biology 71, 589-609.
| Crossref | Google Scholar | PubMed |

Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Ecology and Evolution 14, 82.
| Crossref | Google Scholar | PubMed |

Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S, et al. (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-68.
| Crossref | Google Scholar |

Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676.
| Crossref | Google Scholar | PubMed |

Mai U, Mirarab S (2018) TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19(Suppl 5), 272.
| Crossref | Google Scholar | PubMed |

McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ (2023) Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Molecular Phylogenetics and Evolution 187, 107869.
| Crossref | Google Scholar | PubMed |

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188-1195.
| Crossref | Google Scholar | PubMed |

Mongiardino Koch N (2021) Phylogenomic subsampling and the search for phylogenetically reliable loci. Molecular Biology and Evolution 38, 4025-4038.
| Crossref | Google Scholar | PubMed |

Nge FJ, Biffin E, Thiele KR, Waycott M (2020) Extinction pulse at Eocene–Oligocene boundary drives diversification dynamics of two Australian temperate floras. Proceedings of the Royal Society B 287, 20192546.
| Crossref | Google Scholar | PubMed |

Nge FJ, Biffin E, Thiele KR, Waycott M (2021) Reticulate evolution, ancient chloroplast haplotypes, and rapid radiation of the Australian plant genus Adenanthos (Proteaceae). Frontiers in Ecology and Evolution 8, 616741.
| Crossref | Google Scholar |

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Paetzold C, Wood KR, Eaton DA, Wagner WL, Appelhans MS (2019) Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq resolves species relationships and reveals ancient introgression. Frontiers in Plant Science 10, 1074.
| Crossref | Google Scholar | PubMed |

Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA (2018) Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. American Journal of Botany 105, 385-403.
| Crossref | Google Scholar | PubMed |

Raheem I (2012) Phylogeny of the SE Australian clade of Hibbertia subg. Hemistemma (Dilleniaceae). PhD thesis, The University of Adelaide, Adelaide, SA, Australia.

Raza M, Ortiz EM, Schwung L, Shigita G, Schaefer H (2023) Resolving the phylogeny of Thladiantha (Cucurbitaceae) with three different target capture pipelines. BMC Ecology and Evolution 23, 75.
| Crossref | Google Scholar | PubMed |

Roycroft EJ, Moussalli A, Rowe KC (2019) Phylogenomics uncovers confidence and conflict in the rapid radiation of Australo-Papuan rodents. Systematic Biology 69, 431-444.
| Crossref | Google Scholar |

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology 14, 23.
| Crossref | Google Scholar | PubMed |

Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu Y, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98, 704-730.
| Crossref | Google Scholar | PubMed |

Stebbins GL, Hoogland RD (1976) Species diversity, ecology and evolution in a primitive angiosperm genus: Hibbertia (Dilleniaceae). Plant Systematics and Evolution 125, 139-154.
| Crossref | Google Scholar |

Steenwyk JL, Buida TJ, Li Y, Shen X-X, Rokas A (2020) ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology 18, e3001007.
| Crossref | Google Scholar | PubMed |

Thiele KR (2017) A revision of the Hibbertia lineata (Dilleniaceae) species group. Nuytsia 28, 173-191.
| Crossref | Google Scholar |

Thiele KR (2019a) A revision of the Hibbertia commutata (Dilleniaceae) species group. Australian Systematic Botany 32, 71-109.
| Crossref | Google Scholar |

Thiele KR (2019b) The Hibbertia polystachyaH. spicata (Dilleniaceae) species group in Western Australia. Nuytsia 30, 291-308.
| Crossref | Google Scholar |

Thiele KR, Cockerton G (2015) A revision of the Hibbertia hypericoides species group (Dilleniaceae). Nuytsia 25, 285-300.
| Crossref | Google Scholar |

Toelken HR (2000) Notes on Hibbertia (Dilleniaceae) 3. H. sericea and associated species. Journal of the Adelaide Botanic Gardens 19, 1-54.
| Google Scholar |

Toelken HR (2010) Notes on Hibbertia (Dilleniaceae) 5. H. melhanioides and H. tomentosa groups from tropical Australia. Journal of the Adelaide Botanic Gardens 23, 1-117.
| Google Scholar |

Toelken HR (2013) Notes on Hibbertia subg. Hemistemma (Dilleniaceae) 9. The eastern Australian H. vestita group, including H. pedunculata and H. serpyllifolia. Journal of the Adelaide Botanic Gardens 26, 31-69.
| Google Scholar |

Toelken HR (2023) Notes on Hibbertia (Dilleniaceae: subgen. Hemistemma) — 12. The northern Australian species of the H. banksii group. Swainsona 37, 7-34.
| Google Scholar |

Toelken HR (2024) Notes on Hibbertia subgen. Hemistemma (Dilleniaceae) – 13. The eastern Australian H. acicularis and H. perhamata groups. Swainsona 38, 79-124.
| Google Scholar |

Tucker SC (1997) Floral evolution, development, and convergence: the hierarchical-significance hypothesis. International Journal of Plant Sciences 158(S6), S143-S161.
| Crossref | Google Scholar |

Tucker SC, Bernhardt P (2000) Floral ontogeny, pattern formation, and evolution in Hibbertia and Adrastaea (Dilleniaceae). American Journal of Botany 87, 1915-1936.
| Google Scholar | PubMed |

Veillon J-M (1990) Dilleniaceae. In ‘Flore de la Nouvelle-Calédonie. Vol. 16’. (Eds P Morat, MS MacKee) pp. 2–86. (Muséum National D’histoire Naturelle: Paris, France) [In French]

Waycott M, van Dijk K, Biffin E (2021) A hybrid capture RNA bait set for resolving genetic and evolutionary relationships in angiosperms from deep phylogeny to intraspecific lineage hybridization. BioRxiv
| Crossref | Google Scholar |

Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A (2014) Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 2, 1400042.
| Crossref | Google Scholar | PubMed |

Wikström N, Bremer B, Rydin C (2020) Conflicting phylogenetic signals in genomic data of the coffee family (Rubiaceae). Journal of Systematics and Evolution 58, 440-460.
| Crossref | Google Scholar |

Yang Y-Y, Qu Z-J, Zhang R, Stull GW, Yi T-S (2021) Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. Molecular Phylogenetics and Evolution 163, 107232.
| Crossref | Google Scholar | PubMed |

Zeng CX, Hollingsworth PM, Yang J, He ZS, Zhang ZR, Li DZ, Yang JB (2018) Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods 14, 43.
| Crossref | Google Scholar | PubMed |

Zhang C, Mirarab S (2022) Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Molecular Biology and Evolution 39, msac215.
| Crossref | Google Scholar | PubMed |

Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19(S6), 153.
| Crossref | Google Scholar | PubMed |

Zuntini AR, Carruthers T, Maurin O, et al. (2024) Phylogenomics and the rise of the angiosperms. Nature 629, 843-850.
| Crossref | Google Scholar | PubMed |