A new leaf species of Proteaceae and other Gondwanan elements from the early Paleogene Lota–Coronel flora of south–central Chile
Raymond J. Carpenter A * and Stephen McLoughlin BA
B
Abstract
Leaf fossils collected in 1908 from the Arauco–Concepción Coal Measures of Chile (the Lota–Coronel flora) during a Swedish expedition to southern South America are formally assigned to the important Gondwanan family Proteaceae as Proteaceaefolia araucoensis R.J.Carp. & McLoughlin gen. nov., sp. nov. This is the oldest South American record of macrofossils that can be assigned to Proteaceae with confidence due to the likelihood of the age dating to the latest Paleocene. The fossils lack cuticle but the large, lobed and minutely toothed form is consistent only with extant species of the subfamily Grevilleoideae (notably, Orites excelsus R.Br.) that are confined to eastern Australian rainforests. A new assessment of the Swedish Lota–Coronel collection and review of previous palynological and macrofossil studies, also provide evidence of the strong biogeographic connection that existed between southern South America and Australasia during the early Paleogene, and contradict a traditional view that several Chilean floras of this age consist wholly or largely of Neotropical taxa. Notable austral taxa include Casuarinaceae (as abundant pollen), diverse Podocarpaceae (as both foliage and pollen) and likely Cunoniaceae (leaves). No taxa with clearly Neotropical nearest living relatives have been found to date, but previous conclusions for a warm and very wet early Paleogene climate are supported.
Keywords: Arauco coal, Australasia, climate change, Gondwana, lobed leaf, Neotropics, Orites, Paleogene, plate tectonics, rainforest.
References
Askin RA (1991) Eocene terrestrial palynology of Seymour Island. Antarctic Journal of the United States 26, 44-46.
| Crossref | Google Scholar |
Askin RA, Baldoni AM (1998) The Santonian through Paleogene record of Proteaceae in the southern South America–Antarctic Peninsula Region. Australian Systematic Botany 11, 373-390.
| Crossref | Google Scholar |
Bannister JM, Conran JG, Lee DE (2012) Lauraceae from rainforest surrounding an early Miocene maar lake, Otago, southern New Zealand. Review of Palaeobotany and Palynology 178, 13-34.
| Crossref | Google Scholar |
Barker NP, Weston PH, Rutschmann F, Sauquet H (2007) Molecular dating of the “Gondwanan” plant family Proteaceae is only partially congruent with the timing of Gondwanan break-up. Journal of Biogeography 34, 2012-2027.
| Crossref | Google Scholar |
Becerra J, Contreras-Reyes E, Arriagada C (2013) Seismic structure and tectonics of the southern Arauco Basin, south-central Chile (~38°S). Tectonophysics 592, 53-66.
| Crossref | Google Scholar |
Berry EW (1922) The flora of the Concepcion–Arauco coal measures of Chile. Johns Hopkins University Studies in Geology 4, 73-143.
| Google Scholar |
Blackburn DT (1981) Tertiary megafossil flora of Maslin Bay, South Australia: numerical taxonomic study of selected leaves. Alcheringa 5, 9-28.
| Crossref | Google Scholar |
Cantrill DJ (2018) Cretaceous to Paleogene vegetation transition in Antarctica. In ‘Transformative paleobotany: papers to commemorate the life and legacy of Thomas N. Taylor’. (Eds JF White Jr, K Kingsley, C Harper, Q Chen, SK Verma, L Brindisi, X Chang, A Micci, M Bergen) pp. 645–659. (Academic Press: London, UK) 10.1016/B978-0-12-813012-4.00027-9
Carpenter RJ (2012) Proteaceae leaf fossils: phylogeny, diversity, ecology and austral distributions. Botanical Review 78, 261-287.
| Crossref | Google Scholar |
Carpenter RJ, Jordan GJ (1997) Early Tertiary macrofossils of Proteaceae from Tasmania. Australian Systematic Botany 10, 533-563.
| Crossref | Google Scholar |
Carpenter RJ, Rozefelds AR (2023) Leaf fossils show a 40-million-year history for the Australian tropical rainforest genus Megahertzia (Proteaceae). Australian Systematic Botany 36, 312-321.
| Crossref | Google Scholar |
Carpenter RJ, Iglesias A, Wilf P (2018) Early Cenozoic vegetation in Patagonia: new insights from organically preserved plant fossils (Ligorio Márquez Formation, Argentina). International Journal of Plant Sciences 179, 115-135.
| Crossref | Google Scholar |
Carpenter RJ, Hill RS, Jordan GJ (2005) Leaf cuticular morphology links Platanaceae and Proteaceae. International Journal of Plant Sciences 166, 843-855.
| Crossref | Google Scholar |
Carpenter RJ, Jordan GJ, Hill RS (2016) Fossil leaves of Banksia, Banksieae and pretenders: resolving the fossil genus Banksieaephyllum. Australian Systematic Botany 29, 126-141.
| Crossref | Google Scholar |
Carpenter RJ, McLoughlin S, Hill RS, McNamara KJ, Jordan GJ (2014a) Early evidence of xeromorphy in angiosperms: stomatal encryption in a new Eocene species of Banksia (Proteaceae) from Western Australia. American Journal of Botany 109, 1486-1497.
| Crossref | Google Scholar |
Carpenter RJ, Wilf P, Conran JG, Cúneo NR (2014b) A Paleogene trans-Antarctic distribution for Ripogonum (Ripogonaceae: Liliales)? Palaeontologia Electronica 17(3.39A), 9.
| Crossref | Google Scholar |
Carvalho MR, Wilf P, Hermsen EJ, Gandolfo MA, Cúneo NR, Johnson KR (2013) First record of Todea (Osmundaceae) in South America, from the early Eocene paleorainforests of Laguna del Hunco (Patagonia, Argentina). American Journal of Botany 100, 1831-1848.
| Crossref | Google Scholar | PubMed |
Collao S, Oyarzun R, Palma S, Pineda V (1987) Stratigraphy, palynology and geochemistry of the lower Eocene coals of Arauco, Chile. International Journal of Coal Geology 7, 195-208.
| Crossref | Google Scholar |
Cookson IC, Duigan SL (1950) Fossil Banksieae from Yallourn, Victoria, with notes on the morphology and anatomy of living species. Australian Journal of Scientific Research, Series B: Biological Sciences 3, 133-165.
| Crossref | Google Scholar |
Dettmann ME, Jarzen DM (1998) The early history of the Proteaceae in Australia: the pollen record. Australian Systematic Botany 11, 401-438.
| Crossref | Google Scholar |
Doktor M, Gaździcki A, Jerzmańska A, Porębski SJ, Zastawniak E (1996) A plant and fish assemblage from the Eocene La Meseta Formation of Seymour Island (Antarctic Peninsula) and its environmental implications. Palaeontologia Polonica 55, 127-146.
| Google Scholar |
Doubinger J (1972) Evolution de la flore (pollen et spores) au Chili central (Arauco), du Crétacé supérieur au Miocéne. Compte Rendu des séances de la Societé de Biogeographie 49, 17-25 [In French].
| Google Scholar |
Doubinger J, Chotin P (1975) Etude palynologique de lignites Tertiaires du basin d’Arauco Concepcion (Chile). Revista Espanola de Micropaleontologia 7, 549-565 [In French].
| Google Scholar |
Dusén P (1899) Über die tertiäre Flora der Magallans-Länder. In ‘Wissenschaftliche Ergebnisse der Schwedischen Expedition nach den Magallans-Länder 1895–97. Band I. Geologie, Geographie und Anthropologie’. (Ed. O Nordenskjöld) pp. 87–108. (Lithographisches Institut des Generalstabs: Stockholm, Sweden) [In German]
Engelhardt H (1891) Über Tertiärpflanzen von Chile. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 16, 629-692 [In German].
| Google Scholar |
Engelhardt H (1905) Bemerkungen zu chilenischen Tertiarpflanzen. Abhandlungen der Naturwissenschaft lichen Gesellschaft Isis in Dresden 1905, 69-72 [In German].
| Google Scholar |
Escapa IH, Iglesias A, Wilf P, Catalano SA, Caraballo-Ortiz MA, Cúneo NR (2018) Agathis trees of Patagonia’s Cretaceous-Paleogene death landscapes and their evolutionary significance. American Journal of Botany 105, 1345-1368.
| Crossref | Google Scholar | PubMed |
Ferraro FX, Schilling ME, Baeza S , Oms O, Sá AA (2020) Bottom-up strategy for the use of geological heritage by local communities: Approach in the “Litoral del Bíobío” Mining Geopark project (Chile). Proceedings of the Geologists’ Association 131, 500-510.
| Crossref | Google Scholar |
Florin R (1940) The Tertiary fossil conifers of south Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19, 1-107.
| Google Scholar |
Frenguelli J (1943) Proteáceas del Cenozoico de Patagonia. Notas del Museo de La Plata 8, 201-213 [In Spanish].
| Google Scholar |
Gandolfo MA, Hermsen EJ (2017) Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina. Annals of Botany 119, 507-516.
| Crossref | Google Scholar | PubMed |
Gandolfo MA, Dibbern MC, Romero EJ (1988) Akania patagonica n. sp. and additional material on Akania americana Romero and Hickey (Akaniaceae), from Paleocene sediments of Patagonia. Bulletin of the Torrey Botanical Club 115, 83-88.
| Crossref | Google Scholar |
Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, González CC, Wilf P, Cúneo NR, Johnson KR (2011) Oldest known Eucalyptus macrofossils are from South America. PLoS ONE 6, e21084.
| Crossref | Google Scholar | PubMed |
Gayó E, Hinojosa LF, Villagrán C (2005) On the persistence of tropical paleofloras in central Chile during the early Eocene. Review of Palaeobotany and Palynology 137, 41-50.
| Crossref | Google Scholar |
Gonzalez CC, Gandolfo MA, Zamaloa MC, Cúneo NR, Wilf P, Johnson KR (2007) Revision of the Proteaceae macrofossil record from Patagonia, Argentina. Botanical Review 73, 235-266.
| Crossref | Google Scholar |
Halle TG (1940) A fossil fertile Lygodium from the Tertiary of southern Chile. Svensk Botanisk Tidskrift 34, 257-264.
| Google Scholar |
Hermsen EJ, Gandolfo MA, Zamaloa CMC (2012) The fossil record of Eucalyptus in Patagonia. American Journal of Botany 99, 1356-1374.
| Crossref | Google Scholar | PubMed |
Hill RS (1986) Lauraceous leaves from the Eocene of Nerriga, New South Wales. Alcheringa 10, 327-351.
| Crossref | Google Scholar |
Hill RS, Christophel DC (1988) Tertiary leaves of the tribe Banksieae (Proteaceae) from south-eastern Australia. Botanical Journal of the Linnean Society 97, 205-227.
| Crossref | Google Scholar |
Hinojosa LF (2005) Cambios climáticos y vegetacionales inferidos a partir de Paleofloras Cenozoicas del sur de Sudamérica. Revista Geológica de Chile 32, 95-115 [In Spanish].
| Crossref | Google Scholar |
Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de Sudamérica I: antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Revista Chilena de Historia Natural 70, 225-239 [In Spanish].
| Google Scholar |
Hinojosa LF, Armesto JJ, Villagrán C (2006) Are Chilean coastal forests pre-Pleistocene relicts? Evidence from foliar physiognomy, palaeoclimate, and phytogeography. Journal of Biogeography 33, 331-341.
| Crossref | Google Scholar |
Hopkins HCF, Pillon Y (2020) Virotia azurea (Proteaceae: Macadamieae), a striking new species endemic to New Caledonia and notes on V. francii and V. leptophylla. Candollea 75, 89-98.
| Crossref | Google Scholar |
Horn JW, Fisher JB, Tomlinson PB, Lewis CE, Laubengayer K (2009) Evolution of lamina anatomy in the palm family (Arecaceae). American Journal of Botany 96, 1462-1486.
| Crossref | Google Scholar | PubMed |
Iglesias A, Wilf P, Stiles E, Wilf R (2021) Patagonia’s diverse but homogeneous early Paleocene forests: angiosperm leaves from the Danian Salamanca and Peñas Coloradas formations, San Jorge Basin, Chubut, Argentina. Palaeontologia Electronica 24, a02.
| Crossref | Google Scholar |
Jaramillo C (2023) The evolution of extant South American tropical biomes. New Phytologist 239, 477-493.
| Crossref | Google Scholar | PubMed |
Jaramillo C, Cardenas A (2013) Global warming and Neotropical rainforests: a historical perspective. Annual Review of Earth and Planetary Sciences 41, 741-766.
| Crossref | Google Scholar |
Johnson LAS, Briggs BG (1963) Evolution in the Proteaceae. Australian Journal of Botany 11, 21-61.
| Crossref | Google Scholar |
Johnson LAS, Briggs BG (1975) On the Proteaceae—the evolution and classification of a southern family. Botanical Journal of the Linnean Society 70, 83-182.
| Crossref | Google Scholar |
Jordan GJ, Carpenter RJ, Hill RS (1998) The macrofossil record of Proteaceae: a review with new species. Australian Systematic Botany 11, 465-501.
| Crossref | Google Scholar |
Jud NA, Gandolfo MA, Iglesias A, Wilf P (2018) Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae). Annals of Botany 121, 431-442.
| Crossref | Google Scholar | PubMed |
Knight CL, Wilf P (2013) Rare leaf fossils of Monimiaceae and Atherospermataceae (Laurales) from Eocene Patagonian rainforests and their biogeographic significance. Palaeontologia Electronica 16(3.26A), 39.
| Crossref | Google Scholar |
Kooyman RM, Wilf P, Barreda VD, Carpenter RJ, Jordan GJ, Sniderman JM, Allen A, Brodribb TJ, Crayn D, Feild TS, Laffan SW, Lusk CH, Rossetto M, Weston PH (2014) Paleo-Antarctic rainforest into the modern Old World Tropics: the rich past and threatened future of the “southern wet forest survivors”. American Journal of Botany 101, 2121-2135.
| Crossref | Google Scholar | PubMed |
Lamont BB, He T, Milne LA, Cowling RM (2024) Out of Africa: Linked continents, overland migration and differential survival explain abundance of Proteaceae in Australia. Perspectives in Plant Ecology, Evolution and Systematics 62, 125778.
| Crossref | Google Scholar |
Le Roux J, Elgueta S (1997) Paralic parasequences associated with Eocene sea-level oscillations in an active margin setting: Trihueco Formation of the Arauco Basin, Chile. Sedimentary Geology 110, 257-276.
| Crossref | Google Scholar |
Llorens M, Pérez Loinaze VS, Narváez PL, Zelaya AM, Pérez Pincheira E, Gorustovich S (2022) A mid-latitude Maastrichtian palynological record from the Yacoraite Formation (Salta Group), northwestern Argentina. Cretaceous Research 140, 105332.
| Crossref | Google Scholar |
Machado MA, Passalia MG, Vera EI, Yañez A (2023) Ferns from the Arroyo Chacay flora (Huitrera Formation, Eocene) Río Negro Province, Argentina. Review of Palaeobotany and Palynology 313, 10489.
| Crossref | Google Scholar |
McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271-300.
| Crossref | Google Scholar |
Macphail M, Carpenter RJ, Iglesias A, Wilf P (2013) First evidence for Wollemi Pine-type pollen (Dilwynites: Araucariaceae) in South America. PLoS ONE 8, e69281.
| Crossref | Google Scholar | PubMed |
Malumián N, Náñez C (2011) The Late Cretaceous–Cenozoic transgressions in Patagonia and the Fuegian Andes: foraminifera, palaeoecology, and palaeogeography. Biological Journal of the Linnean Society 103, 269-288.
| Crossref | Google Scholar |
Manchester SR (2014) Revisions to Roland Brown’s North American Paleocene flora. Acta Musei Nationalis Pragae – B. Historia Naturalis 70, 153-210.
| Crossref | Google Scholar |
Martínez-Pardo R, Martínez-Guzmán R (1997) La Formación Curanilahue del Paleógeno Carbonifero de la Cuenca de Arauco–Concepción, Chile Central: el Ocaso de la “opinio-estratigrafia” como herramienta habitual en al trabajo geológico nacional. In ‘VIII Congreso Geologico Chileno’, 13–17 October 1997, Antofagasta, Chile. pp. 520–524. (Universidad Catolica del Norte) Available at https://repositorio.sernageomin.cl/handle/0104/19966 [In Spanish].
| Google Scholar |
Martínez-Pardo R, Martínez-Guzmán R (2008) Cronomicropaleontología de la Cuenca de Arauco–Concepción, Chile Central: la tafoflora de Lota, el evento megatérmico global del límite Eoceno-Paleoceno y las extinciones masivas. In ‘I Simposio – Paleontologia en Chile’, 2–3 October 2008, Santiago, Chile. (Eds A. Rubilar, D. Rubilar, C Gutstein) pp. 151–153. (Asociación Chilena de Paleontología) Available at https://www.achp.cl/manejador/resources/i-simposiopaleochile-libro-de-actas-24-abril.pdf [In Spanish].
| Google Scholar |
Martínez-Pardo R, Martínez-Guzmán R, Vilches-Guzman G (1997) El límite Paleoceno-Eoceno en la cuenca carbonífera de Arauco–Concepción, Chile Central. In ‘VIII Congreso Geológico Chileno’, 13–17 October 1997, Antofagasta, Chile. pp. 530–533. (Universidad Católica del Norte) Available at https://repositorio.sernageomin.cl/handle/0104/19968 [In Spanish].
| Google Scholar |
Matsunaga KKS, Smith SY (2021) Fossil palm reading: using fruits to reveal the deep roots of palm diversity. American Journal of Botany 108, 472-494.
| Crossref | Google Scholar | PubMed |
Muller J (1968) Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous–Eocene) in Sarawak, Malaysia. Micropaleontology 14, 1-37.
| Crossref | Google Scholar |
Muñoz-Cristi J (1946) Estado actual del conocimiento sobre la geología de la provincia de Arauco. Anales Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile 3, 30-63 [In Spanish].
| Google Scholar |
Muñoz-Cristi J (1968) Contribución al conocimiento geológico de la región situada al sur de Arauco y participación de material volcánico en los sedimentos eocenos. In ‘El Terciario de Chile, Zona Central’. (Ed. G Cecioni) pp. 63–93. (Sociedad Geológica de Chile and Andrés Bello: Santiago, Chile) [In Spanish]
Oh C, Philippe M, McLoughlin S, Woo J, Leppe M, Torres T, Park T-YS, Choi H-G (2020) New fossil woods from the early Cenozoic volcano-sedimentary rocks in the Fildes Peninsula, King George Island, and implications for the trans-Antarctic Peninsula Eocene climatic gradient. Papers in Palaeontology 6, 1-29.
| Crossref | Google Scholar |
Olde PM (2017) A preliminary checklist of fossil names in extant genera of the Proteaceae. Telopea 20, 289-324.
| Crossref | Google Scholar |
Palma-Heldt S (1980) Nuevos antecedentes en el estudio palinológico de los mantos carboníferos del terciario de Arauco–Concepción, Chile. Boletim Instituto de Geociencias, Universidad Sao Paulo 11, 161-168 [In Spanish with abstract in Spanish and English].
| Crossref | Google Scholar |
Palma-Heldt S, Quinzio LA, Bonilla R, Cisterna K (2009) Implicancias estratigráficas del primer registro de Notofagadites en el Paleógeno de la Cuenca de Arauco, Región del Bío-Bío, Chile. In ‘XII Congreso Geológico Chileno’, 22–26 November 2009, Santiago, Chile. (Eds M Reich, JP Le Roux) pp. 1–4. (El Departamento de Geología de la Universidad de Chile: Santiago, Chile) [In Spanish]
Panti C (2016) Myrtaceae fossil leaves from the Río Turbio Formation (Middle Eocene), Santa Cruz Province, Argentina. Historical Biology 28, 459-469.
| Crossref | Google Scholar |
Panti C (2018) Fossil leaves of subtropical lineages in the Eocene–?Oligocene of southern Patagonia. Historical Biology 35, 252-266.
| Crossref | Google Scholar |
Pocknall DT, Clowes CD, Jarzen DM (2022) Spinizonocolpites prominatus (McIntyre) Stover & Evans: fossil Nypa pollen, taxonomy, morphology, global distribution, and paleoenvironmental significance. New Zealand Journal of Geology and Geophysics 66, 558-570.
| Crossref | Google Scholar |
Pole M (1994) An Eocene macroflora from the Taratu Formation at Livingstone, North Otago, New Zealand. Australian Journal of Botany 42, 341-367.
| Crossref | Google Scholar |
Quattrocchio ME, Volkheimer W (1990) Paleogene palaeoenvironment trends as reflected by palynological assemblage types, Salta Basin. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 181, 377-396.
| Crossref | Google Scholar |
Quattrocchio M, Martínez M, Hinojosa LF, Jaramillo C (2013) Quantitative analysis of Cenozoic palynofloras from Patagonia (southern South America). Palynology 37, 246-258.
| Crossref | Google Scholar |
Rodriguez D, Ward DJ, Quezada J (2023) Paleontology and stratigraphic implications of a late Paleocene elasmobranch assemblage in Talcahuano, southcentral Chile. Andean Geology 50, 217-247.
| Crossref | Google Scholar |
Romero EJ (1986) Paleogene phytogeography and climatology of South America. Annals of the Missouri Botanical Garden 73, 449-461.
| Crossref | Google Scholar |
Rossetto-Harris G, Wilf P, Escapa IH, Andruchow-Colombo A (2020) Eocene Araucaria Sect. Eutacta from Patagonia and floristic turnover during the initial isolation of South America. American Journal of Botany 107, 806-832.
| Crossref | Google Scholar | PubMed |
Rozefelds AC, Dettmann ME, Clifford HT, Carpenter RJ (2017) Lygodium (Schizaeaceae) in southern high latitudes during the Cenozoic—a new species and new insights into character evolution in the genus. Review of Palaeobotany and Palynology 247, 40-52.
| Crossref | Google Scholar |
Salazar C, Stinnesbeck W, Quinzio-Sinn LA (2010) Ammonites from the Maastrichtian (Upper Cretaceous) Quiriquina Formation in central Chile. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 257, 181-236.
| Crossref | Google Scholar |
Skottsberg C (1909) Swedish Magellanic Expedition, 1907–1909. The Geographical Journal 33, 289-294.
| Crossref | Google Scholar |
Sleumer H (1954) Proteaceae americanae. Botanischer Jahrbücher 76, 139-211 [In German].
| Google Scholar |
Sleumer H (1955) Proteaceae. Flora Malesiana ser. I 5, 147-206.
| Google Scholar |
Stinnesbeck W (1986) Zu den faunistischen und palökologischen Verhältnissen in der Quriquina Formation (Maastrichtium) Zentral-Chiles. Palaeontographica 194, 99-237 [In German].
| Google Scholar |
Suárez M, de la Cruz R, Troncoso A (2000) Tropical/subtropical upper Paleocene–lower Eocene fluvial deposits in eastern central Patagonia, Chile (46°45′S). Journal of South American Earth Sciences 13, 527-536.
| Crossref | Google Scholar |
Takahashi K (1977) Palynology of the Lower Tertiary Concepción Formation, central Chile. Transactions and Proceedings of the Palaeontological Society of Japan 106, 71-88.
| Crossref | Google Scholar |
Testo WL, de Gasper AL, Molino S, Gabriel y Galán JM, Salino A, de Oliveira Dittrich VA, Sessa EB (2022) Deep vicariance and frequent transoceanic dispersal shape the evolutionary history of a globally distributed fern family. American Journal of Botany 109, 1579-1595.
| Crossref | Google Scholar | PubMed |
Tilley LJ (2024) Composition of Paleocene forests from Antarctica based on fossil wood. Review of Palaeobotany and Palynology 330, 105174.
| Crossref | Google Scholar |
Tosolini A-MP, Cantrill DJ, Francis JE (2013) Paleocene flora from Seymour Island, Antarctica: revision of Dusén’s (1908) angiosperm taxa. Alcheringa 37, 366-391.
| Crossref | Google Scholar |
Tosolini A-MP, Cantrill DJ, Korasidis VA, Francis JE (2023) Palaeocene high-latitude leaf flora of Antarctica Part 2: tooth-margined angiosperms. Review of Palaeobotany and Palynology 314, 104895.
| Crossref | Google Scholar |
Troncoso A (1992) La tafoflora terciaria de Quinamávida (VII región). Boletín del Museo Nacional de Historia Natural, Chile 43, 155-178 [In Spanish].
| Crossref | Google Scholar |
Troncoso A, Suárez M, de la Cruz R, Palma-Heldt S (2002) Paleoflora de la Formación Ligorio Márquez (XI Región, Chile) en su localidad tipo: sistemática, edad e implicancias paleoclimáticas. Revista Geologica de Chile 29, 113-135.
| Crossref | Google Scholar |
Townrow JA (1965) Notes on Tasmanian pines I. Some Lower Tertiary podocarps. Papers and Proceedings of the Royal Society of Tasmania 99, 87-107.
| Crossref | Google Scholar |
Upchurch GR, Wolfe JA (1987) Extinction patterns in Laurales at the Cretaceous–Tertiary boundary. American Journal of Botany 74, 692-693.
| Crossref | Google Scholar |
Vento B, Prámparo MB (2018) Angiosperm association from the Río Turbio Formation (Eocene–?Oligocene) Santa Cruz, Argentina: revision of Hünicken’s (1955) fossil leaves collection. Alcheringa 42, 125-153.
| Crossref | Google Scholar |
Villagrán C, Hinojosa LF (1997) Historia de los bosques del sur de Sudamérica II: análisis fitogeográfico. Revista Chilena de Historia Natural 70, 241-267.
| Google Scholar |
Wenzel O, Wathelet J, Chávez L, Bonilla R (1975) La sedimentación cíclica Meso Cenozoica en la región Carbonífera de Arauco–Concepción, Chile. In ‘II Congreso Ibero-Americano de Geología Económica’, 15–19 December 1975, Buenos Aires, Argentina. pp. 215–237. (Asociación Geológica Argentina: Buenos Aires, Argentina) [In Spanish]
Wilf P (2012) Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99, 562-584.
| Crossref | Google Scholar | PubMed |
Wilf P, Little SA, Iglesias A, Zamaloa MC, Gandolfo MA, Cúneo NR, Johnson KR (2009) Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. American Journal of Botany 96, 2031-2047.
| Crossref | Google Scholar | PubMed |
Wilf P, Escapa IH, Cúneo NR, Kooyman RM, Johnson KR, Iglesias A (2014) First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101, 156-179.
| Crossref | Google Scholar | PubMed |
Wilf P, Stevenson DW, Cúneo NR (2016) The last Patagonian cycad, Austrozamia stockeyi gen. et sp. nov., early Eocene of Laguna del Hunco, Chubut, Argentina. Botany 94, 817-829.
| Crossref | Google Scholar |
Wilf P, Donovan MP, Cúneo NR, Gandolfo MA (2017) The fossil flip-leaves (Retrophyllum, Podocarpaceae) of southern South America. American Journal of Botany 104, 1344-1369.
| Crossref | Google Scholar | PubMed |
Zamaloa MC, Gandolfo MA, Gonzalez CC, Romero EJ, Cúneo NR, Wilf P (2006) Casuarinaceae from the Eocene of Patagonia, Argentina. International Journal of Plant Sciences 167, 1279-1289.
| Crossref | Google Scholar |
Zambrano PA, Encinas A, Buatois LA, Arenillas I, Stinnesbeck W, Nielsen SN (2014) Sedimentology, age and provenance of Paleogene delta systems from Central Chile. In ‘Reunión Argentina de Sedimentología, No. 14, Resúmenes 1, Puerto Madryn’. pp. 299–300. (Asociación Argentina de Sedimentología: La Plata, Argentina) [In Spanish]