Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

More links in the daisy chain: morphology and molecules delimit two new species in Coronidium and two in Leucozoma (Asteraceae; Gnaphalieae)

Timothy L. Collins https://orcid.org/0000-0002-4055-9381 A C , Alexander N. Schmidt-Lebuhn https://orcid.org/0000-0002-7402-8941 B , Rose L. Andrew https://orcid.org/0000-0003-0099-8336 A , Ian R. H. Telford https://orcid.org/0000-0002-3570-0053 A and Jeremy J. Bruhl https://orcid.org/0000-0001-9112-4436 A *
+ Author Affiliations
- Author Affiliations

A Botany and N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

B Centre for Australian National Biodiversity Research (a joint venture of Parks Australia and CSIRO), Clunies Ross Street, Canberra, ACT 2601, Australia.

C Present address: New South Wales Department of Climate Change, Energy, the Environment and Water, 11 Farrer Place, Queanbeyan, NSW 2620, Australia.

* Correspondence to: jbruhl@une.edu.au

Handling Editor: Jennifer Tate

Australian Systematic Botany 38, SB24018 https://doi.org/10.1071/SB24018
Submitted: 3 June 2024  Accepted: 5 February 2025  Published: 13 March 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Taxonomic uncertainty in Coronidium has existed since its original circumscription. Recent molecular phylogenetic analyses inferred Coronidium to be non-monophyletic and composed of four distinct clades, leading to the erection of Leucozoma and the confirmation that C. scorpioides (Labill.) Paul G.Wilson and related species are more closely related to other Australian Gnaphalieae. The present study focused on the delimitation of those species inferred to be part of Coronidium, Leucozoma and the closely related Helichrysum leucopsideum DC. We gathered DArTseq single-nucleotide polymorphism data and tested species limits by examining genotypic differences, ancestry, and morphological characters observed on herbarium specimens and living collections. Results support the recognition of four new narrowly endemic species, namely, C. batianoffii T.L.Collins & I.Telford, C. bruhlii T.L.Collins, L. alexandri T.L.Collins and L. wollumbin T.L.Collins. Results indicated that the narrow endemic C. fulvidum Paul G.Wilson is a variable hybrid between C. newcastlianum (Domin) Paul G.Wilson and C. rupicola (DC.) Paul G. Wilson, and subspecies of C. oxylepis (F.Muell.) Paul G.Wilson to be a polymorphic aggregate or ochlospecies, the subject of ongoing study. We lectotypify H. elatum A.Cunn ex DC. and Helipterum glutinosum Hook. and provide revised descriptions of all taxa in the genera, their conservation status, a dichotomous key, tables distinguishing closely related taxa and distribution maps.

Keywords: Australia, Compositae, DArT, endemic, Helichrysum, Helichrysum leucopsideum, hybrid, ochlospecies, paper daisy, taxonomy.

References

Abbott RJ (2017) Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. Journal of Systematics and Evolution 55, 238-258.
| Crossref | Google Scholar |

Alam M, Neal J, O’Connor K, Kilian A, Topp B (2018) Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in Macadamia. PLoS ONE 13, e0203465.
| Crossref | Google Scholar | PubMed |

Al-Beyroutiová M, Sabo M, Sleziak P, Dušinský R, Birčák E, Hauptvogel P, Kilian A, Švec M (2016) Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism. Plant Systematics and Evolution 302, 1083-1091.
| Crossref | Google Scholar |

Beaumont M, Barratt EM, Gottelli D, Kitchener AC, Daniels MJ, Pritchard JK, Bruford MW (2001) Genetic diversity and introgression in the Scottish wildcat. Molecular Ecology 10, 319-336.
| Crossref | Google Scholar | PubMed |

Chang Y, Ebihara A, Lu S, Liu H, Schneider H (2018) Integrated taxonomy of the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Journal of Plant Research 131, 573-587.
| Crossref | Google Scholar | PubMed |

Collins TL, Andrew RL, Bruhl JJ (2019) Morphological, phytochemical and molecular analyses define species limits in Eucalyptus magnificata (Myrtaceae) and lead to the discovery of a new rare species. Australian Systematic Botany 32, 12-28.
| Crossref | Google Scholar |

Collins TL, Bruhl JJ, Andrew RL, Telford IRH, Schmidt-Lebuhn AN (2022) Phylogenetic relationships of Xerochrysum, Coronidium and Helichrysum leucopsideum reveal a new genus, Leucozoma (Asteraceae: Gnaphalieae). Taxon 71, 1044-1064.
| Crossref | Google Scholar |

Cronk QCB (1998) The ochlospecies concept. In ‘Chorology, Taxonomy and Ecology of the Floras of Africa and Madagascar. Oxford University’. (Eds CR Huxley, JM Lock, DE Cutler) pp. 155–170. (Royal Botanic Gardens Kew: London, UK)

Curry S, Maslin BR, Maslin JA (2002) ‘Allan Cunningham: Australian Collecting Localities’. (Australian Biological Resources Study)

Dayrat B (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407-415.
| Crossref | Google Scholar |

Department of the Environment and Energy (2016) ‘Interim Biogeographical Regionalisation for Australia (IBRA) version 7.’ (Commonwealth of Australia: Canberra, ACT, Australia)

de Queiroz K (2005) A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 4, 196-215.
| Google Scholar |

de Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56, 879-886.
| Crossref | Google Scholar | PubMed |

De Salas MF, Schmidt-Lebuhn AN (2018) Integrative approach resolves the taxonomy of the Ozothamnus ledifolius (Asteraceae: Gnaphaliae) species complex in Tasmania, Australia. Phytotaxa 358, 117-138.
| Crossref | Google Scholar |

D’hoop BB, Paulo JM, Kowitwanich K, Sengers M, Visser RGF, van Eck HJ, van Eeuwijk FA (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics 121, 1151-1170.
| Crossref | Google Scholar | PubMed |

Egea LA, Mérida-García R, Kilian A, Hernandez P, Dorado G (2017) Assessment of genetic diversity and structure of large garlic (Allium sativum) germplasm bank, by Diversity Arrays Technology ‘genotyping-by-sequencing’ platform (DArTseq). Frontiers in Genetics 8, 98.
| Crossref | Google Scholar |

Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567-1587.
| Crossref | Google Scholar | PubMed |

Gruber B, Unmack PJ, Berry OF, Georges A (2018) dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources 18, 691-699.
| Crossref | Google Scholar | PubMed |

Hammer TA, Macintyre PD, Nge FJ, Davis RW, Mucina L, Thiele KR (2018) The noble and the exalted: a multidisciplinary approach to resolving a taxonomic controversy within Ptilotus (Amaranthaceae). Australian Systematic Botany 31, 262-280.
| Crossref | Google Scholar |

Harrington MG, Gadek PA (2009) A species well travelled – the Dodonaea viscosa (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETSf sequences. Journal of Biogeography 36, 2313-2323.
| Crossref | Google Scholar |

International Union for Conservation of Nature and Natural Resources (2022) ‘IUCN Red List Categories and Criteria.’ (IUCN: Gland, Switzerland)

Jeanes AJ (2021) Studies in Podolepis and some related genera (Asteraceae: Gnaphalieae). Muelleria 39, 79-12.
| Crossref | Google Scholar |

Khan G, Godoy MO, Franco FF, Perez MF, Taylor NP, Zappi DC, Machado MC, Moraes EM (2018) Extreme population subdivision or cryptic speciation in the cactus Pilosocereus jauruensis? A taxonomic challenge posed by a naturally fragmented system. Systematics and Biodiversity 16, 188-199.
| Crossref | Google Scholar |

Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In ‘Data Production and Analysis in Population Genomics’. (Eds F Pompanon, A Bonin) pp. 67–89. (Humana Press: Totowa, NJ, USA)

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5), 1179-1191.
| Crossref | Google Scholar |

Laport RG, Minckley RL, Ramsey J (2016) Ecological distributions, phenological isolation, and genetic structure in sympatric and parapatric populations of the Larrea tridentata polyploid complex. American Journal of Botany 103, 1358-1374.
| Crossref | Google Scholar | PubMed |

Lawson DJ, van Dorp L, Falush D (2018) A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nature Communications 9, 3258.
| Crossref | Google Scholar | PubMed |

Lima DF, Mauad AVS, da Silva-Pereira V, de Camargo Smidt E, Goldenberg R (2015) Species boundaries inferred from ISSR markers in the Myrcia laruotteana complex (Myrtaceae). Plant Systematics and Evolution 301, 353-363.
| Crossref | Google Scholar |

Lipsen LPJ, Lee C, Whitton J (2013) Genetic and ecological differences between two Utah endemics: US federally threatened Townsendia aprica and its close congener, T. jonesii var. lutea (Asteraceae). Botany 91, 242-250.
| Crossref | Google Scholar |

Meirmans PG (2019) Subsampling reveals that unbalanced sampling affects Structure results in a multi-species dataset. Heredity 122, 276-287.
| Crossref | Google Scholar | PubMed |

Moore AJ, Moore WL, Baldwin BG (2014) Genetic and ecotypic differentiation in a Californian plant polyploid complex (Grindelia, Asteraceae). PLoS One 9, e95656.
| Crossref | Google Scholar |

Orchard A, Thompson H (1999) ‘Flora of Australia. Vol. 1 Introduction.’ (Australian Biological Resources Study: Canberra, ACT, Australia; and CSIRO Publishing: Melbourne, Vic., Australia)

Payne WW (1978) A glossary of plant hair terminology. Brittonia 30, 239-255.
| Crossref | Google Scholar |

Prance G (1979) Forest refuges: evidence from woody angiosperms. In ‘Biological diversification in the tropics: Proceedings of the Fifth International Symposium of the Association for Tropical Biology’, 8–13 February 1979, Caracas, Venezuela. pp. 137–158. (Colombia University Press: New York, NY, USA)

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
| Crossref | Google Scholar | PubMed |

Rieseberg LH, Ellstrand NC, Arnold M (1993) What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences 12, 213-241.
| Crossref | Google Scholar |

Rutherford S, Rossetto M, Bragg JG, McPherson H, Benson D, Bonser SP, Wilson PG (2018) Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species. Heredity 121, 126-141.
| Crossref | Google Scholar | PubMed |

Schmidt-Lebuhn AN, Bovill J (2021) Phylogenetic data reveal four major clades of Australian Gnaphalieae (Asteraceae). Taxon 70, 1020-1034.
| Crossref | Google Scholar |

Schmidt-Lebuhn AN, Bruhl JJ, Telford IR, Wilson PG (2015) Phylogenetic relationships of Coronidium, Xerochrysum and several neglected Australian species of ‘Helichrysum’ (Asteraceae: Gnaphalieae). Taxon 64, 96-109.
| Crossref | Google Scholar |

Stift M, Kolář F, Meirmans PG (2019) STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity 123, 429-441.
| Crossref | Google Scholar | PubMed |

Stöck M, Ustinova J, Lamatsch DK, Schartl M, Perrin N, Moritz C (2010) A vertebrate reproductive system involving three ploidy levels: Hybrid origin of triploids in a contact zone of diploid and tetraploid palearctic green toads (Bufo viridis subgroup). Evolution 64, 944-959.
| Crossref | Google Scholar | PubMed |

Telford IRH (1990) Moving mountains – Allan Cunningham and the mountains of southern Queensland. In ‘History of Systematic Botany in Australasia’. (Ed. PS Short) p. 157. (Australian Systematic Botany Society Inc.)

Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (Eds) (2018) ‘International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code)’, adopted by the Nineteenth International Botanical Congress, July 2017, Shenzhen, PR China. Regnum Vegetabile, vol. 159. (Koeltz Botanical Books: Glashütten, Germany) 10.12705/Code.2018

Walsh N (2014) A revision of the Coronidium scorpioides (Asteraceae: Gnaphalieae) complex. Muelleria 32, 16-33.
| Crossref | Google Scholar |

White F (1962) Geographic variation and speciation in Africa with particular reference to Diospyros. Taxonomy and Geography 4, 71-103.
| Google Scholar |

White F (1978) The taxonomy, ecology and chorology of African Ebenaceae I. The Guineo-Congolian species. Bulletin du Jardin Botanique National de Belgique/Bulletin van de National Plantentuin van België 48, 245-358.
| Crossref | Google Scholar |

Wilson PG (2008) Coronidium, a new Australian genus in the Gnaphalieae (Asteraceae). Nuytsia 18, 295-329.
| Crossref | Google Scholar |

Wilson PG (2016) A taxonomic treatment of Chrysocephalum apiculatum and C. semipapposum (Asteraceae: Gnaphalieae). Nuytsia 27, 33-73.
| Crossref | Google Scholar |