Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

Big trees of small baskets: phylogeny of the Australian genus Spyridium (Rhamnaceae: Pomaderreae), focusing on biogeographic patterns and species circumscriptions

Catherine Clowes https://orcid.org/0000-0002-9466-753X A * , Rachael M. Fowler A , Patrick S. Fahey A , Jürgen Kellermann B C , Gillian K. Brown D and Michael J. Bayly https://orcid.org/0000-0001-6836-5493 A
+ Author Affiliations
- Author Affiliations

A School of Biosciences, The University of Melbourne, Vic. 3010, Australia.

B State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia.

C School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

D Department of Environment and Science, Queensland Herbarium, Toowong, Qld 4066, Australia.

* Correspondence to: cclowes@student.unimelb.edu.au

Handling Editor: Russell Barrett

Australian Systematic Botany 35(2) 95-119 https://doi.org/10.1071/SB21034
Submitted: 29 September 2021  Accepted: 10 March 2022   Published: 18 May 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Spyridium Fenzl is a genus of ~45 species endemic to south-western and south-eastern Australia. This study provides the most comprehensive phylogenies of Spyridium to date, analysing both entire chloroplast genomes and the nuclear ribosomal array (18S5.8S26S). There was substantial incongruence between the chloroplast and nuclear phylogenies, creating phylogenetic uncertainty, but some clear relationships and biogeographic patterns could be established. Analyses support the monophyly of Spyridium, identifying an early east–west split at the base of the nuclear phylogeny and deep divergences of New South Wales and Tasmanian endemic clades. We also found evidence of more recent dispersal events between eastern and western Australia and between Tasmania and the mainland. Eleven taxa were found to be monophyletic in the nrDNA phylogeny and two were clearly polyphyletic (S. eriocephalum Fenzl and S. phylicoides Reissek). Although the polyphyly of S. eriocephalum correlates with the two varieties, suggesting distinct taxa, further research is required on S. phylicoides.

Keywords: biogeography, chloroplast genome, molecular phylogeny, next-generation sequencing, nuclear ribosomal DNA, Rhamnaceae, species delimitation, Spyridium.


References

Aagesen L, Medan D, Kellermann J, Hilger HH (2005) Phylogeny of the tribe Colletieae (Rhamnaceae) – a sensitivity analysis of the plastid region trnL-trnF combined with morphology. Plant Systematics and Evolution 250, 197–214.
Phylogeny of the tribe Colletieae (Rhamnaceae) – a sensitivity analysis of the plastid region trnL-trnF combined with morphology.Crossref | GoogleScholarGoogle Scholar |

Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29, 417–434.
Ribosomal ITS sequences and plant phylogenetic inference.Crossref | GoogleScholarGoogle Scholar | 14615184PubMed |

Arnheim N (1983) Concerted evolution of multigene families. In ‘Evolution of genes and proteins’. (Eds M Nei, R Koehn) pp. 38–61. (Sinauer: Sunderland, MA, USA)

Atlas of Living Australia (2020) Occurrence records download on 2020-06-26: taxon_name: ‘Spyridium’. Available at
| Crossref | [Verified 26 June 2020]

Barker WR (2005) Standardising informal names in Australian publications. Australian Systematic Botany Society Newsletter 122, 11–12.

Barrett RA, Bayly MJ, Duretto MF, Forster PI, Ladiges PY, Cantrill DJ (2018) Phylogenetic analysis of Zieria (Rutaceae) in Australia and New Caledonia based on nuclear ribosomal DNA shows species polyphyly, divergent paralogues and incongruence with chloroplast DNA. Australian Systematic Botany 31, 16–47.
Phylogenetic analysis of Zieria (Rutaceae) in Australia and New Caledonia based on nuclear ribosomal DNA shows species polyphyly, divergent paralogues and incongruence with chloroplast DNA.Crossref | GoogleScholarGoogle Scholar |

Bentham G (1863) Rhamneae. In ‘Flora Australiensis, a description of the plants of the Australian territory. Vol. 1: Ranunculaceae to Anacardiaceae’. pp. 409–445. (Lovell Reeve and Co: London, UK)

Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121, 613–627.
Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes.Crossref | GoogleScholarGoogle Scholar | 2714640PubMed |

Buckler ES, Holtsford TP (1996) Zea systematics: ribosomal ITS evidence. Molecular Biology and Evolution 13, 612–622.
Zea systematics: ribosomal ITS evidence.Crossref | GoogleScholarGoogle Scholar | 8882504PubMed |

Burge DO, Hopkins R, Tsai Y-HE, Manos PS (2013) Limited hybridization across an edaphic disjunction between the gabbro-endemic shrub Ceanothus roderickii (Rhamnaceae) and the soil-generalist Ceanothus cuneatus. American Journal of Botany 100, 1883–1895.
Limited hybridization across an edaphic disjunction between the gabbro-endemic shrub Ceanothus roderickii (Rhamnaceae) and the soil-generalist Ceanothus cuneatus.Crossref | GoogleScholarGoogle Scholar | 24018856PubMed |

Canning EM (1986) Spyridium. In ‘Flora of South Australia’, Vol. 2. (Eds JP Jessop, HR Toelken) (Government Printer: Adelaide, SA, Australia)

CHAH (2020) Spyridium Fenzl. In ‘Australian Plant Census’. (Council of Heads of Australian Herbaria) Available at https://biodiversity.org.au/nsl/services/search?product=APNI&tree.id=&name=Spyridium&inc._scientific=&inc._cultivar=&inc._other=&max=100&display=&search=true [Verified 17 November 2020]

Clowes C, Fowler RM, Brown GK, Bayly MJ (2018) The complete chloroplast genome sequence of Spyridium parvifolium var. parvifolium (family Rhamnaceae; tribe Pomaderreae). Mitochondrial DNA. Part B, Resources 3, 807–809.
The complete chloroplast genome sequence of Spyridium parvifolium var. parvifolium (family Rhamnaceae; tribe Pomaderreae).Crossref | GoogleScholarGoogle Scholar | 33474330PubMed |

Coates F, Kirkpatrick JB (1999) Is geographic range correlated with climatic range in Australian Spyridium taxa? Australian Journal of Botany 47, 755–767.
Is geographic range correlated with climatic range in Australian Spyridium taxa?Crossref | GoogleScholarGoogle Scholar |

Crisp MD, Cook LG (2007) A congruent molecular signature of vicariance across multiple plant lineages. Molecular Phylogenetics and Evolution 43, 1106–1117.
A congruent molecular signature of vicariance across multiple plant lineages.Crossref | GoogleScholarGoogle Scholar | 17434758PubMed |

Department of Agriculture Water and the Environment (2020) Interim Biogeographic Regionalisation for Australia (Regions – States and Territories) v. 7 (IBRA). Available at https://www.environment.gov.au/fed/catalog/search/resource/details.page?uuid=%7B1273FBE2-F266-4F3F-895D-C1E45D77CAF5%7D [Verified 26 July 2020]

Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochemical Bulletin 19, 11–15.

Freeman JS, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts BM, Vaillancourt RE (2001) Chloroplast DNA phylogeography of Eucalyptus globulus. Australian Journal of Botany 49, 585–596.
Chloroplast DNA phylogeography of Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar |

French PA, Brown GK, Bayly MJ (2016) Incongruent patterns of nuclear and chloroplast variation in Correa (Rutaceae): introgression and biogeography in south-eastern Australia. Plant Systematics and Evolution 302, 447–468.
Incongruent patterns of nuclear and chloroplast variation in Correa (Rutaceae): introgression and biogeography in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Galloway RW, Kemp EM (1981) Late Cainozoic environments of Australia. In ‘Ecological Biogeography of Australia’, Vol. 1. (Ed. A Keast) pp. 53–80. (Junk: The Hague, Netherlands)

García N, Folk RA, Meerow AW, Chamala S, Gitzendanner MA, de Oliveira RS, Soltis DE, Soltis PS (2017) Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae). Molecular Phylogenetics and Evolution 111, 231–247.
Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae).Crossref | GoogleScholarGoogle Scholar | 28390909PubMed |

Hardig TM, Soltis PS, Soltis DE, Hudson RB (2002) Morphological and molecular analysis of putative hybrid speciation in Ceanothus (Rhamnaceae). Systematic Botany 27, 734–746.

Hauenschild F, Matuszak S, Muellner-Riehl AN, Favre A (2016) Phylogenetic relationships within the cosmopolitan buckthorn family (Rhamnaceae) support the resurrection of Sarcomphalus and the description of Pseudoziziphus gen. nov. Taxon 65, 47–64.
Phylogenetic relationships within the cosmopolitan buckthorn family (Rhamnaceae) support the resurrection of Sarcomphalus and the description of Pseudoziziphus gen. nov.Crossref | GoogleScholarGoogle Scholar |

Hauenschild F, Favre A, Michalak I, Muellner‐Riehl AN (2018) The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae). Journal of Biogeography 45, 2669–2677.
The influence of the Gondwanan breakup on the biogeographic history of the ziziphoids (Rhamnaceae).Crossref | GoogleScholarGoogle Scholar |

Hope GS (1978) The late Pleistocene and Holocene vegetational history of Hunter Island, north-western Tasmania. Australian Journal of Botany 26, 493–514.
The late Pleistocene and Holocene vegetational history of Hunter Island, north-western Tasmania.Crossref | GoogleScholarGoogle Scholar |

Hope GS (1994) Quaternary vegetation. In ‘History of the Australian vegetation: Cretaceous to recent’. (Ed. GS Hope) pp. 368–389. (University of Adelaide Press: Adelaide, SA, Australia)

Jabaily RS, Shepherd KA, Gardner AG, Gustafsson MHG, Howarth DG, Motley TJ (2014) Historical biogeography of the predominantly Australian plant family Goodeniaceae. Journal of Biogeography 41, 2057–2067.
Historical biogeography of the predominantly Australian plant family Goodeniaceae.Crossref | GoogleScholarGoogle Scholar |

Jobes DV, Thien LB (1997) A conserved motif in the 5.8 S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. Plant Molecular Biology Reporter 15, 326–334.
A conserved motif in the 5.8 S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences.Crossref | GoogleScholarGoogle Scholar |

Joly S (2012) JML: testing hybridization from species trees. Molecular Ecology Resources 12, 179–184.
JML: testing hybridization from species trees.Crossref | GoogleScholarGoogle Scholar | 21899723PubMed |

Joly S, McLenachan PA, Lockhart PJ (2009) A statistical approach for distinguishing hybridization and incomplete lineage sorting. American Naturalist 174, E54–E70.
A statistical approach for distinguishing hybridization and incomplete lineage sorting.Crossref | GoogleScholarGoogle Scholar | 19519219PubMed |

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 12136088PubMed |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kellermann J (2007) Re-instatement of the name Spyridium waterhousei from Kangaroo Island, South Australia, with a short history of the tribe Pomaderreae (Rhamnaceae). Journal of the Adelaide Botanic Gardens 21, 55–62.

Kellermann J (2021) The importance of the ‘h’ – parahomonymy in Trymalium (Rhamnaceae: Pomaderreae). Swainsona 35, 23–29.

Kellermann J, Barker WR (2012) Revision of the Spyridium bifidumS. halmaturinum complex (Rhamnaceae: Pomaderreae) from South Australia and Victoria. Muelleria 30, 26–58.

Kellermann J, Udovicic F (2007) Large indels obscure phylogeny in analysis of chloroplast DNA (trnL–F) sequence data: Pomaderreae (Rhamnaceae) revisited. Telopea 12, 1–22.

Kellermann J, Udovicic F, Ladiges PY (2005) Phylogenetic analysis and generic limits of the tribe Pomaderreae (Rhamnaceae) using internal transcribed spacer DNA sequences. Taxon 54, 619–631.
Phylogenetic analysis and generic limits of the tribe Pomaderreae (Rhamnaceae) using internal transcribed spacer DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Kellermann J, Rye BL, Thiele KR (2008) Nomenclatural notes, typifications and name changes in Trymalium (Rhamnaceae: Pomaderreae). Transactions of the Royal Society of South Australia 132, 18–28.
Nomenclatural notes, typifications and name changes in Trymalium (Rhamnaceae: Pomaderreae).Crossref | GoogleScholarGoogle Scholar |

Kellermann J, Thiele KR, Udovicic F, Walsh NG (2022) Rhamnaceae. In ‘Flora of Australia’. (Ed. PG Kodela) (Australian Biological Resources Study: Canberra, ACT, Australia) Available at https://profiles.ala.org.au/opus/foa/profile/Rhamnaceae [Verified 10 May 2022]

Kirkpatrick JB, Fowler M (1998) Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic models. Biological Conservation 85, 171–182.
Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic models.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Bayly MJ, Nelson G (2012) Searching for ancestral areas and artifactual centers of origin in biogeography: with comment on east–west patterns across southern Australia. Systematic Biology 61, 703–708.
Searching for ancestral areas and artifactual centers of origin in biogeography: with comment on east–west patterns across southern Australia.Crossref | GoogleScholarGoogle Scholar | 22234419PubMed |

Larcombe MJ, McKinnon GE, Vaillancourt RE (2011) Genetic evidence for the origins of range disjunctions in the Australian dry sclerophyll plant Hardenbergia violacea. Journal of Biogeography 38, 125–136.
Genetic evidence for the origins of range disjunctions in the Australian dry sclerophyll plant Hardenbergia violacea.Crossref | GoogleScholarGoogle Scholar |

Matzke NJ (2013) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5, 242–247..
Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing.Crossref | GoogleScholarGoogle Scholar |

McLay TG (2017) High quality DNA extraction protocol from recalcitrant plant tissue. Available at https://www.protocols.io/view/high-quality-dna-extraction-protocol-from-recalcit-i8jchun [Verified 12 July 2018]

McLay TGB, Ladiges PY, Doyle SR, Bayly MJ (2021) Phylogeographic patterns of the Australian grass trees (Xanthorrhoea Asphodelaceae) shown using targeted amplicon sequencing. Australian Systematic Botany 34, 206–225.
Phylogeographic patterns of the Australian grass trees (Xanthorrhoea Asphodelaceae) shown using targeted amplicon sequencing.Crossref | GoogleScholarGoogle Scholar |

Medan D, Arbetman M, Chaia EE, Premoli AC (2012) Interspecific and intergeneric hybridization in south American Rhamnaceae-Colletieae. Plant Systematics and Evolution 298, 1425–1435.
Interspecific and intergeneric hybridization in south American Rhamnaceae-Colletieae.Crossref | GoogleScholarGoogle Scholar |

Meudt HM, Bayly MJ (2008) Phylogeographic patterns in the Australasian genus Chionohebe (Veronica s.l., Plantaginaceae) based on AFLP and chloroplast DNA sequences. Molecular Phylogenetics and Evolution 47, 319–338.
Phylogeographic patterns in the Australasian genus Chionohebe (Veronica s.l., Plantaginaceae) based on AFLP and chloroplast DNA sequences.Crossref | GoogleScholarGoogle Scholar | 18299210PubMed |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE)
| Crossref |

Milner ML, Rossetto M, Crisp MD, Weston PH (2012) The impact of multiple biogeographic barriers and hybridization on species‐level differentiation. American Journal of Botany 99, 2045–2057.
The impact of multiple biogeographic barriers and hybridization on species‐level differentiation.Crossref | GoogleScholarGoogle Scholar | 23221499PubMed |

Mole BJ, Udovicic F, Ladiges PY, Duretto MF (2004) Molecular phylogeny of Phebalium (Rutaceae: Boronieae) and related genera based on the nrDNA regions ITS 1+ 2. Plant Systematics and Evolution 249, 197–212.
Molecular phylogeny of Phebalium (Rutaceae: Boronieae) and related genera based on the nrDNA regions ITS 1+ 2.Crossref | GoogleScholarGoogle Scholar |

Nauheimer L, Schley RJ, Clements MA, Micheneau C, Nargar K (2018) Australasian orchid biogeography at continental scale: molecular phylogenetic insights from the sun orchids (Thelymitra, Orchidaceae). Molecular Phylogenetics and Evolution 127, 304–319.
Australasian orchid biogeography at continental scale: molecular phylogenetic insights from the sun orchids (Thelymitra, Orchidaceae).Crossref | GoogleScholarGoogle Scholar | 29870858PubMed |

Neal WC, James EA, Bayly MJ (2019) Phylogeography, classification and conservation of pink zieria (Zieria veronicea; Rutaceae): influence of changes in climate, geology and sea level in south-eastern Australia. Plant Systematics and Evolution 305, 503–520.
Phylogeography, classification and conservation of pink zieria (Zieria veronicea; Rutaceae): influence of changes in climate, geology and sea level in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Nelson EC (1974) Disjunct plant distributions on the south-western Nullarbor Plain, Western Australia. Journal of the Royal Society of Western Australia 57, 105–117.

Nge FJ, Biffin E, Thiele KR, Waycott M (2021a) Reticulate evolution, ancient chloroplast haplotypes, and rapid radiation of the Australian plant genus Adenanthos (Proteaceae). Frontiers in Ecology and Evolution 8, 616741

Nge FJ, Biffin E, Waycott M, Thiele KR (2021b) Phylogenomics and continental biogeographic disjunctions: insight from the Australian starflowers (Calytrix). American Journal of Botany 109, 291–308.
Phylogenomics and continental biogeographic disjunctions: insight from the Australian starflowers (Calytrix).Crossref | GoogleScholarGoogle Scholar |

Nge FJ, Kellermann J, Biffin E, Waycott M, Thiele KR (2021c) Historical biogeography of Pomaderris (Rhamnaceae): continental vicariance in Australia and repeated independent dispersals to New Zealand. Molecular Phylogenetics and Evolution 158, 107085
Historical biogeography of Pomaderris (Rhamnaceae): continental vicariance in Australia and repeated independent dispersals to New Zealand.Crossref | GoogleScholarGoogle Scholar | 33540078PubMed |

Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. American Naturalist 130, S6–S29.
Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation.Crossref | GoogleScholarGoogle Scholar |

Perrin D (2018) ‘Dictionary of botanical names: Australian plant names, meanings, derivation and application.’ (JT Press)

Quilty PG (1994) The background: 144 million years of Australian palaeoclimate and palaeogeography. In ‘History of the Australian vegetation: Cretaceous to recent’. (Ed. RS Hill) Vol. 14, pp. 14–43. (University of Adelaide Press: Adelaide, SA, Australia)

Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.Crossref | GoogleScholarGoogle Scholar | 18253896PubMed |

Richardson JE, Chatrou LW, Mols JB, Erkens RHJ, Pirie MD (2004) Historical biogeography of two cosmopolitan families of flowering plants: annonaceae and Rhamnaceae. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 1495–1508.
Historical biogeography of two cosmopolitan families of flowering plants: annonaceae and Rhamnaceae.Crossref | GoogleScholarGoogle Scholar | 15519968PubMed |

Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5, 65–84.

Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Research 22, 939–946.
Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture.Crossref | GoogleScholarGoogle Scholar | 22267522PubMed |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Sanmartín I, Meseguer AS (2016) Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Frontiers in Genetics 7, 35
Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage.Crossref | GoogleScholarGoogle Scholar | 27047538PubMed |

Schuster TM, Setaro SD, Tibbits JFG, Batty EL, Fowler RM, McLay TGB, Wilcox S, Ades PK, Bayly MJ (2018) Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PLoS One 13, e0195034
Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 29668710PubMed |

Shepherd LD, McLay TGB (2011) Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. Journal of Plant Research 124, 311–314.
Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue.Crossref | GoogleScholarGoogle Scholar | 20927638PubMed |

Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11, 7
TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 20051126PubMed |

Thiele KR, West JG (2004) Spyridium burragorang (Rhamnaceae), a new species from New South Wales, with new combinations for Spyridium buxifolium and Spyridium scortechinii. Telopea 10, 823–829.

Tsitrone A, Kirkpatrick M, Levin DA (2003) A model for chloroplast capture. Evolution 57, 1776–1782.
A model for chloroplast capture.Crossref | GoogleScholarGoogle Scholar | 14503619PubMed |

VicFlora (2018) Spyridium. In ‘Flora of Victoria’. (Royal Botanic Gardens Foundation Victoria) Available at https://vicflora.rbg.vic.gov.au/flora/taxon/829f1202-25c7-429c-97f7-fc7a9ba62a2d [Verified 23 April 2018]

Wiley EO, Lieberman BS (2011) ‘Phylogenetics: theory and practice of phylogenetic systematics.’ (Wiley: Hoboken, NJ, USA)

Wilkins C, Kern S, Rathborne D, Markey A (2011). ‘Rare and poorly known flora of the Raventhorpe Range and Bandalup Hill.’ (Government of Western Australia: Perth, WA, Australia)

Worth JRP, Holland BR, Beeton NJ, Schönfeld B, Rossetto M, Vaillancourt RE, Jordan GJ (2017) Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway. Annals of Botany 120, 539–549.
Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway.Crossref | GoogleScholarGoogle Scholar | 28961707PubMed |

Worth JRP, Sakaguchi S, Harrison PA, Brüniche-Olsen A, Janes JK, Crisp MD, Bowman DMJS (2018) Pleistocene divergence of two disjunct conifers in the eastern Australian temperate zone. Biological Journal of the Linnean Society 125, 459–474.
Pleistocene divergence of two disjunct conifers in the eastern Australian temperate zone.Crossref | GoogleScholarGoogle Scholar |

Wright IJ, Ladiges PY (1997) Geographic variation in Eucalyptus diversifolia (Myrtaceae) and the recognition of new subspecies E. diversifolia subsp. hesperia and E. diversifolia subsp. megacarpa. Australian Systematic Botany 10, 651–680.
Geographic variation in Eucalyptus diversifolia (Myrtaceae) and the recognition of new subspecies E. diversifolia subsp. hesperia and E. diversifolia subsp. megacarpa.Crossref | GoogleScholarGoogle Scholar |