Three new tribes in Myrtaceae and reassessment of Kanieae
Peter G. Wilson A * , Margaret M. Heslewood A and Myall A. Tarran B CA National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia.
B School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
C Environment Institute, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
Australian Systematic Botany 35(4) 279-295 https://doi.org/10.1071/SB21032
Submitted: 31 August 2021 Accepted: 22 April 2022 Published: 15 July 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)
Abstract
The current tribal classification of Myrtaceae was based on analysis of the plastid matK coding region within the trnK intron. The phylogenetic position of the genera Cloezia and Xanthomyrtus was poorly supported, and the original sequence for Kania, the type genus of the tribe Kanieae, was rather poor. To clarify relationships, we sequenced plastid psbA–trnH and an extended portion of the trnK intron, including the spacer regions flanking matK, and nuclear ribosomal ITS and ETS regions for representative species across the tribes, including denser sampling of the three genera of interest. Analyses of these extended datasets show a strong relationship between Kania and the tribe Metrosidereae but not with other genera presently assigned to the Kanieae. The relationship between Kania and the tribe Metrosidereae is strongly correlated with morphological features recently documented in Metrosideros fossils. Consequently, a new tribe, Tristaniopsideae PeterG.Wilson, is described to accommodate most genera presently assigned to Kanieae. Furthermore, the morphological divergence and genetic distance shown by Cloezia and Xanthomyrtus are here considered as justifying their recognition as the tribes Cloezieae Peter G.Wilson and Xanthomyrteae Peter G.Wilson. Recognition of these tribes brings to four the number of tribes absent from present-day mainland Australia. Prior to this study, Metrosidereae was the only tribe in subfamily Myrtoideae that was absent from mainland Australia.
Keywords: Cloezia, Kania, molecular phylogenetics, Myrtaceae, taxonomy, tribes, Tristaniopsis, Xanthomyrtus.
References
Biffin E, Lucas EJ, Craven LA, da Costa IR, Harrington MG, Crisp MD (2010) Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany 106, 79–93.| Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 20462850PubMed |
Briggs BG, Johnson LAS (1979) Evolution in the Myrtaceae: evidence from inflorescence structure. Proceedings of the Linnean Society of New South Wales 102, 157–256.
Dawson JW (1970a) Pacific capsular Myrtaceae 2. The Metrosideros complex: M. collina group. Blumea 18, 441–445.
Dawson JW (1970b) Pacific capsular Myrtaceae 3. The Metrosideros complex: Mearnsia halconensis group and Metrosideros diffusa group. Blumea 18, 447–452.
Dawson JW (1972a) Pacific capsular Myrtaceae 7. Mooria. Blumea 20, 331–334.
Dawson JW (1972b) Pacific capsular Myrtaceae 8. Tepualia. Blumea 20, 335–337.
Dawson JW (1972c) Pacific capsular Myrtaceae 5. The Metrosideros complex: M. elegans group. Blumea 20, 323–326.
Dawson JW (1972d) Pacific capsular Myrtaceae 6. The Metrosideros complex: M. perforata and the M. operculata group. Blumea 20, 327–329.
Dawson JW (1974) Pacific Capsular Myrtaceae 9. The Metrosideros Complex: M. queenslandica group. Blumea 22, 151–153.
Dawson JW (1975) Capsular Myrtaceae 10. The Metrosideros complex: M. angustifolia (South Africa). Blumea 22, 295–297.
Engler A (1930) Saxifragaceae. In ‘Die natürlichen Pflanzenfamilien’, edn 2, 18a. (Eds K Engler, K Prantl) pp. 74–226. (Engelmann: Leipzig, Germany)
Erdtman G, Metcalfe CR (1963) Affinities of certain genera incertae sedis suggested by pollen morphology and vegetative anatomy. I. The myrtaceous affinity of Kania eugenioides Schltr. Kew Bulletin 17, 249–250.
| Affinities of certain genera incertae sedis suggested by pollen morphology and vegetative anatomy. I. The myrtaceous affinity of Kania eugenioides Schltr.Crossref | GoogleScholarGoogle Scholar |
Gadek PA, Martin HA (1981) Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance. Australian Journal of Botany 29, 159–184.
| Pollen morphology in the subtribe Metrosiderinae of the Leptospermoideae (Myrtaceae) and its taxonomic significance.Crossref | GoogleScholarGoogle Scholar |
Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of a noncoding region of the chloroplast genome. Molecular Phylogenetics and Evolution 2, 52–64.
| Evolution of a noncoding region of the chloroplast genome.Crossref | GoogleScholarGoogle Scholar | 8081547PubMed |
Ilic J (1991) ‘CSIRO Atlas of Hardwoods.’ (Springer-Verlag: Berlin, Germany)
Ingle HD, Dadswell HE (1947) The wood anatomy of the Myrtaceae, I. A note on the genera Eugenia, Syzygium, Acmena and Cleistocalyx. Tropical Woods 90, 1–7.
Ingle HD, Dadswell HE (1953) The anatomy of the timbers of the south-west Pacific area. III. Myrtaceae. Australian Journal of Botany 1, 353–401.
| The anatomy of the timbers of the south-west Pacific area. III. Myrtaceae.Crossref | GoogleScholarGoogle Scholar |
Landrum LR, Stevenson D (1986) Variability of embryos in subtribe Myrtinae (Myrtaceae). Systematic Botany 11, 155–162.
| Variability of embryos in subtribe Myrtinae (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution 4, 203–221.
| Slipped-strand mispairing: a major mechanism for DNA sequence evolution.Crossref | GoogleScholarGoogle Scholar | 3328815PubMed |
Maddison WP, Maddison DR (2000) ‘MacClade 4: Analysis of Phylogeny and Character Evolution.’ (Sinauer Associates: Sunderland, MA, USA)
Maurin O, Anest A, Bellot S, et al. (2021) A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. American Journal of Botany 108, 1087–1111.
| A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set.Crossref | GoogleScholarGoogle Scholar | 34297852PubMed |
McIntyre DJ (1963) Pollen morphology of New Zealand species of Myrtaceae. Transactions of the Royal Society of New Zealand, Botany 2, 83–107.
Meylan BA, Butterfield BG (1978) The structure of New Zealand woods. Bulletin, New Zealand Department of Scientific and Industrial Research 222, 1–250.
Miller MA, Pfeiffer W, Schwartz T (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE)
| Crossref |
O’Brien MM, Quinn CJ, Wilson PG (2000) Molecular systematics of the Leptospermum suballiance. Australian Journal of Botany 48, 621–628.
| Molecular systematics of the Leptospermum suballiance.Crossref | GoogleScholarGoogle Scholar |
Patel VC, Skvarla JJ, Raven PH (1984) Pollen characters in relation to the delimitation of Myrtales. Annals of the Missouri Botanical Garden 71, 858–969.
| Pollen characters in relation to the delimitation of Myrtales.Crossref | GoogleScholarGoogle Scholar |
Pike KM (1956) Pollen morphology of Myrtaceae from the south-west Pacific area. Australian Journal of Botany 4, 13–53.
| Pollen morphology of Myrtaceae from the south-west Pacific area.Crossref | GoogleScholarGoogle Scholar |
Pole M (1992) Eocene vegetation from Hasties, north‐eastern Tasmania. Australian Systematic Botany 5, 431–475.
| Eocene vegetation from Hasties, north‐eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |
Pole M, Dawson J, Denton T (2008) Fossil Myrtaceae from the early Miocene of southern New Zealand. Australian Journal of Botany 56, 67–81.
| Fossil Myrtaceae from the early Miocene of southern New Zealand.Crossref | GoogleScholarGoogle Scholar |
Reveal JL (2012) An outline of a classification scheme for extant flowering plants. Phytoneuron 37, 1–221.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |
Schlechter R (1914) Die Saxifragaceae Papuasiens. Botanische Jahrbücher 52, 118–138.
Scott AJ (1983) Two new species of Kania (Myrtaceae) from New Guinea. Kew Bulletin 38, 309–310.
| Two new species of Kania (Myrtaceae) from New Guinea.Crossref | GoogleScholarGoogle Scholar |
Scott AJ (1990) A new combination in Kania (Myrtaceae) from West New Guinea. Kew Bulletin 45, 205–206.
| A new combination in Kania (Myrtaceae) from West New Guinea.Crossref | GoogleScholarGoogle Scholar |
Simmons MP, Freudenstein JV (2011) Spurious 99% bootstrap and jackknife support for unsupported clades. Molecular Phylogenetics and Evolution 61, 177–191.
| Spurious 99% bootstrap and jackknife support for unsupported clades.Crossref | GoogleScholarGoogle Scholar | 21703355PubMed |
Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
| Gaps as characters in sequence-based phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 12118412PubMed |
Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11, 7
| TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 20051126PubMed |
Swofford DL (2003) ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.’ (Sinauer Associates: Sunderland, MA, USA)
Tarran M, Wilson PG, Hill RS (2016) Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits and leaves from Australia. American Journal of Botany 103, 754–768.
| Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits and leaves from Australia.Crossref | GoogleScholarGoogle Scholar | 27056926PubMed |
Tarran M, Wilson PG, Macphail MK, Jordan GJ, Hill RS (2017) Two fossil species of Metrosideros (Myrtaceae) from the Oligo-Miocene Golden Fleece locality in Tasmania, Australia. American Journal of Botany 104, 891–904.
| Two fossil species of Metrosideros (Myrtaceae) from the Oligo-Miocene Golden Fleece locality in Tasmania, Australia.Crossref | GoogleScholarGoogle Scholar | 28634257PubMed |
Thornhill AH, Crisp MD (2012) Phylogenetic assessment of pollen characters in Myrtaceae. Australian Systematic Botany 25, 171–187.
| Phylogenetic assessment of pollen characters in Myrtaceae.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Hope GS, Craven LA, Crisp MD (2012a) Pollen morphology of the Myrtaceae. Part 4: tribes Kanieae, Myrteae and Tristanieae. Australian Journal of Botany 60, 260–289.
| Pollen morphology of the Myrtaceae. Part 4: tribes Kanieae, Myrteae and Tristanieae.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Hope GS, Craven LA, Crisp MD (2012b) Pollen morphology of the Myrtaceae. Part 2: tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae. Australian Journal of Botany 60, 200–224.
| Pollen morphology of the Myrtaceae. Part 2: tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93, 29–43.
| Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny.Crossref | GoogleScholarGoogle Scholar | 26211451PubMed |
van Steenis CGGJ (1969) Reduction of the genus Kania Schltr. to Metrosideros (Myrtaceae). Blumea 16, 357–359.
Weberling F (1966) Additional notes on the Myrtaceous affinity of Kania eugenioides Schltr. Kew Bulletin 20, 517–520.
| Additional notes on the Myrtaceous affinity of Kania eugenioides Schltr.Crossref | GoogleScholarGoogle Scholar |
Wilson PG (1982) Additions to the genus Kania (Myrtaceae) in Malesia, with notes on Cloezia. Blumea 28, 177–180.
Wilson PG (1993) Thaleropia, a new genus for Metrosideros queenslandica (Myrtaceae) and its allies. Australian Systematic Botany 6, 251–259.
| Thaleropia, a new genus for Metrosideros queenslandica (Myrtaceae) and its allies.Crossref | GoogleScholarGoogle Scholar |
Wilson PG (2011) Myrtaceae. In ‘The families and genera of vascular plants. Vol. X. Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae’. (Ed. K Kubitzki) pp. 212–271. (Springer-Verlag: Heidelberg, Germany)
Wilson PG, Heslewood MM (2016) Phylogenetic position of Meteoromyrtus (Myrtaceae). Telopea 19, 45–55.
Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
| Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |