Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Fassettia, a new North American genus of family Ceratophyllaceae: evidence based on cladistic analyses of current molecular data of Ceratophyllum

Evgeny V. Mavrodiev https://orcid.org/0000-0002-9670-7662 A E , David M. Williams B , Malte C. Ebach https://orcid.org/0000-0002-9594-9010 C and Anna E. Mavrodieva D
+ Author Affiliations
- Author Affiliations

A Florida Museum of Natural History, University of Florida, PO Box 117800, Gainesville, FL 32611, USA.

B Department of Life Sciences, the Natural History Museum, Cromwell Road, London, SW7 5BD, UK.

C Paleontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Kensington, NSW 2052, Australia.

D University of Florida, Gainesville, FL 32641, USA.

E Corresponding author. Email: evgeny@ufl.edu

Australian Systematic Botany 34(5) 431-437 https://doi.org/10.1071/SB20008
Submitted: 22 April 2020  Accepted: 27 April 2021   Published: 06 July 2021

Abstract

The major goal of this study was to re-analyse a published molecular dataset based on ITS and matK sequences of the genus Ceratophyllum (Ceratophyllaceae) within a cladistic framework, operating only with rooted trees. The problem is lack of an identifiable suitable outgroup to Ceratophyllum. We show different ways to root trees and thus resolve the sister group relationships within this genus. We root the trees using an all zero outgroup or a combination of exemplar taxa from among monocots (Acorus), eudcots (Ranunculus) and Chloranthus. Ceratophyllum echinatum was consistently strongly supported as sister to all of the remaining taxa of the genus. This observation is congruent with the earlier results of Les who noted the uniqueness of C. echinatum in a series of comprehensive morphological and biosystematic studies. We, here, transfer C. echinatum to a new and presumably monotypic genus Fassettia Mavrodiev. The exact taxonomic circumscription of Fassettia requires further investigation.

Keywords: taxonomy, standard maximum parsimony, three-taxon statement analysis, average consensus


References

Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85, 531–553.
An ordinal classification for the families of flowering plants.Crossref | GoogleScholarGoogle Scholar |

Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161, 105–121.
An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Crossref | GoogleScholarGoogle Scholar |

Carine MA, Scotland RW (1999) Taxic and transformational homology: different ways of seeing. Cladistics 15, 121–129.

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim KJ, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide-sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80, 528–580.
Phylogenetics of seed plants: an analysis of nucleotide-sequences from the plastid gene rbcL.Crossref | GoogleScholarGoogle Scholar |

Creevey CJ (2004) ‘Clann: Construction of supertrees and exploration of phylogenomic information from partially overlapping datasets (version 3.0.0). User Manual.’ (The Laboratory of McInerney: Manchester, UK)

Creevey CJ, McInerney JO (2005) Clann: Investigating phylogenetic information through supertree analyses. Bioinformatics 21, 390–392.
Clann: Investigating phylogenetic information through supertree analyses.Crossref | GoogleScholarGoogle Scholar | 15374874PubMed |

Creevey CJ, McInerney JO (2009) Trees from trees: construction of phylogenetic supertrees using Clann. In ‘Bioinformatics for DNA Sequence Analysis’. (Ed. D Posada) pp. 139–161. (Humana Press-Springer: Geneva, Switzerland)

Dilcher DL, Wang H (2009) An Early Cretaceous fruit with affinities to Ceratophyllaceae. American Journal of Botany 96, 2256–2269.
An Early Cretaceous fruit with affinities to Ceratophyllaceae.Crossref | GoogleScholarGoogle Scholar | 21622341PubMed |

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Farris JS (1983) The logical basis of phylogenetic analysis. In ‘Advances in Cladistics’. (Eds NI Platnick, V Funk) pp. 7–36. (Columbia University Press: New York, NY, USA)

Fassett NC (1953) North American Ceratophyllum. Comunicaciones Instituto Tropical de Investigaciones Científicas de El Salvador 2, 25–45.

Felsenstein J (2004) ‘Inferring Phylogenies.’ (Sinauer Associates Inc.: Sunderland, MA, USA)

Fu D, Les DH (2001) Ceratophyllaceae. In ‘Flora of China’. (Eds ZY Wu, PH Raven) Vol. 6, pp. 121–122. (Science Press: Beijing, China; and St Louis Botanical Garden Press: Saint Louis, MO, USA)

Gomez B, Daviero-Gomez V, Coiffard C, Martín-Closas C, Dilcher DL (2015) Montsechia, an ancient aquatic angiosperm. Proceedings of the National Academy of Sciences of the United States of America 112, 10985–10988.
Montsechia, an ancient aquatic angiosperm.Crossref | GoogleScholarGoogle Scholar | 26283347PubMed |

Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221–224.
SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Crossref | GoogleScholarGoogle Scholar | 19854763PubMed |

Kitching IJ, Forey PL, Humphries CJ, Williams DM (1998) ‘Cladistics. The Theory and Practice of Parsimony Analysis’, 2nd edn. Systematics Association publication 11. (Oxford University Press: New York, NY, USA)

Kluge AG, Farris JS (1999) Taxic homology equals overall similarity. Cladistics 15, 205–212.

Kuzeneva-Prochorova O (1937) Ceratophyllaceae A.Gray. In ‘Flora of the USSR’. (Eds BK Schischkin, VL Komarov) Vol. 7, pp. 14–20, 721. (Science Press: Leningrad, USSR) [In Russian]

Kvaček J, Doyle JA, Endress PK, Daviero-Gomez V, Gomez B, Tekleva M (2016) Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: a possible link between Chloranthaceae and Ceratophyllum. Taxon 65, 1345–1373.
Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: a possible link between Chloranthaceae and Ceratophyllum.Crossref | GoogleScholarGoogle Scholar |

Lapointe FJ, Cucumel G (1997) The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Systematic Biology 46, 306–312.
The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa.Crossref | GoogleScholarGoogle Scholar |

Lapointe FJ, Levasseur C (2004) Everything you always wanted to know about the average consensus, and more. In ‘Phylogenetic Supertrees’. (Ed. O Bininda-Emonds) pp. 87–105 (Springer: Dordrecht, Netherlands)

Les DH (1983) A comparative study of flavonoids in Ceratophyllum demersum L. and Ceratophyllum echinatum A. Gray (Ceratophyllaceae). The Ohio Journal of Science 83, 14

Les DH (1985) The taxonomic significance of plumule morphology in Ceratophyllum (Ceratophyllaceae). Systematic Botany 10, 338–346.
The taxonomic significance of plumule morphology in Ceratophyllum (Ceratophyllaceae).Crossref | GoogleScholarGoogle Scholar |

Les DH (1988) The evolution of achene morphology in Ceratophyllum (Ceratophyllaceae). 2. Fruit variation and systematics of the spiny-margined group. Systematic Botany 13, 73–86.
The evolution of achene morphology in Ceratophyllum (Ceratophyllaceae). 2. Fruit variation and systematics of the spiny-margined group.Crossref | GoogleScholarGoogle Scholar |

Les DH (1989) The evolution of achene morphology in Ceratophyllum (Ceratophyllaceae). 4. Summary of proposed relationships and evolutionary trends. Systematic Botany 14, 254–262.
The evolution of achene morphology in Ceratophyllum (Ceratophyllaceae). 4. Summary of proposed relationships and evolutionary trends.Crossref | GoogleScholarGoogle Scholar |

Les DH (1991) Genetic diversity in the monoecious hydrophile Ceratophyllum (Ceratophyllaceae). American Journal of Botany 78, 1070–1082.
Genetic diversity in the monoecious hydrophile Ceratophyllum (Ceratophyllaceae).Crossref | GoogleScholarGoogle Scholar |

Les DH (1997) Ceratophyllaceae. In ‘Flora of North America and North of Mexico, Vol. 3’. pp. 81–84. (Oxford University Press, New York, NY, USA)

Les DH, Philbrick CT (1993) Studies of hybridization and chromosome–number variation in aquatic angiosperms–evolutionary implications. Aquatic Botany 44, 181–228.
Studies of hybridization and chromosome–number variation in aquatic angiosperms–evolutionary implications.Crossref | GoogleScholarGoogle Scholar |

Lundberg JG (1972) Wagner networks and ancestors. Systematic Zoology 21, 398–413.
Wagner networks and ancestors.Crossref | GoogleScholarGoogle Scholar |

Malyshev LI (2012) Ceratophyllaceae S.F. Gray. In ‘Conspectus Florae Rossiae Asiaticae: Plantae Vasculares’. (Ed. KS Baikov) p. 26. (Russian Academy of Science: Novosibirsk, Russia) [In Russian]

Mavrodiev EV (2015) 1001: a tool for binary representations of unordered multistate characters (with examples from genomic data). PeerJ 3, e1153v1
1001: a tool for binary representations of unordered multistate characters (with examples from genomic data).Crossref | GoogleScholarGoogle Scholar |

Mavrodiev EV, Madorsky A (2012) TAXODIUM Version 1.0: a simple way to generate uniform and fractionally weighted three-item matrices from various kinds of biological data. PLoS One 7, e48813
TAXODIUM Version 1.0: a simple way to generate uniform and fractionally weighted three-item matrices from various kinds of biological data.Crossref | GoogleScholarGoogle Scholar | 23185277PubMed |

Mavrodiev EV, Dell C, Schroder L (2017) A laid-back trip through the Hennigian forests. PeerJ 5, e3578
A laid-back trip through the Hennigian forests.Crossref | GoogleScholarGoogle Scholar | 28740753PubMed |

Mavrodiev EV, Williams DM, Ebach MC (2019) On the typology of relations. Evolutionary Biology 46, 71–89.
On the typology of relations.Crossref | GoogleScholarGoogle Scholar |

Muenscher WC (1940) Fruits and seedlings of Ceratophyllum. American Journal of Botany 27, 231–233.
Fruits and seedlings of Ceratophyllum.Crossref | GoogleScholarGoogle Scholar |

Nelson G, Platnick NI (1991) Three-taxon statements: a more precise use of parsimony? Cladistics 7, 351–366.
Three-taxon statements: a more precise use of parsimony?Crossref | GoogleScholarGoogle Scholar |

Nixon KC, Carpenter JM (1993) On outgroups. Cladistics 9, 413–426.
On outgroups.Crossref | GoogleScholarGoogle Scholar |

Peattie DC (1954) Norman Carter Fassett 1900–1954. Rhodora 56, 233–242.

Platnick NI (2013) Less on homology. Cladistics 29, 10–12.
Less on homology.Crossref | GoogleScholarGoogle Scholar |

Qiu YL, Chase MW, Les DH, Parks CR (1993) Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide-sequences of the plastid gene rbcL. Annals of the Missouri Botanical Garden 80, 587–606.
Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide-sequences of the plastid gene rbcL.Crossref | GoogleScholarGoogle Scholar |

Rannala B, Yang ZH (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43, 304–311.
Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference.Crossref | GoogleScholarGoogle Scholar | 8703097PubMed |

Smith AB (1994) Rooting molecular trees: problems and strategies. Biological Journal of the Linnean Society. Linnean Society of London 51, 279–292.
Rooting molecular trees: problems and strategies.Crossref | GoogleScholarGoogle Scholar |

Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. The University of Kansas Science Bulletin 38, 1409–1438.

Soltis D, Soltis P, Endress P, Chase MW, Manchester S, Judd W, Majure L, Mavrodiev E (2018) ‘Phylogeny and evolution of the Angiosperms’, revised and updated edition. (Chicago University Press: Chicago, IL, USA)

Swofford DL (2002) ‘PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10.’ (Sinauer Associates Inc.: Sunderland, MA, USA)

Szalontai B, Stranczinger S, Mesterhazy A, Scribailo RW, Les DH, Efremov AN, Jacono CC, Kipriyanova LM, Kaushik K, Laktionov AP, Terneus E, Csiky J (2018) Molecular phylogenetic analysis of Ceratophyllum L. taxa: a new perspective. Botanical Journal of the Linnean Society 188, 161–172.
Molecular phylogenetic analysis of Ceratophyllum L. taxa: a new perspective.Crossref | GoogleScholarGoogle Scholar |

Thomson WJ (1955) Norman C. Fassett, 1900–1954. Taxon 4, 49–51.
Norman C. Fassett, 1900–1954.Crossref | GoogleScholarGoogle Scholar |

Tzvelev NN (1987) Ceratophyllaceae S. F. Gray. In ‘Plantae vasculares Orientis Extrimi Sovetici’. (Ed. SS Charkevicz) pp. 28–29. (Science Press: Leningrad, USSR) [In Russian]

Tzvelev NN (2012) Ceratophyllaceae S. F. Gray. In ‘Conspectus florae Europae Orientalis’. (Ed. DV Geltman) pp. 96–97. (KMK: Saint Petersburg, Russia) [In Russian]

Vavilov NI (1922) The law of homologous series in variation. Journal of Genetics 12, 47–89.
The law of homologous series in variation.Crossref | GoogleScholarGoogle Scholar |

Wang H, Dilcher DL (2018) A new species of Donlesia (Ceratophyllaceae) from the Early Cretaceous of Kansas, USA. Review of Palaeobotany and Palynology 252, 20–28.
A new species of Donlesia (Ceratophyllaceae) from the Early Cretaceous of Kansas, USA.Crossref | GoogleScholarGoogle Scholar |

Williams DM, Ebach MC (2008) ‘Foundations of Systematics and Biogeography.’ (Springer: New York, NY, USA)

Williams DM, Siebert DJ (2000) Characters, homology and three-item analysis. In ‘Homology and Systematics: Coding Characters for Phylogenetic Analysis’. (Eds RW Scotland, RT Pennington.) Vol. 58, pp. 183–208. (Chapman and Hall: London, UK)

Zanis MJ, Soltis PS, Qiu YL, Zimmer E, Soltis DE (2003) Phylogenetic analyses and perianth evolution in basal angiosperms. Annals of the Missouri Botanical Garden 90, 129–150.
Phylogenetic analyses and perianth evolution in basal angiosperms.Crossref | GoogleScholarGoogle Scholar |