Track analysis of the Neotropical species of Capparaceae
Jorge D. Mercado-Gómez A B D and Tania Escalante CA Grupo Evolución y Sistemática Tropical, Departamento de Biología y Química, Universidad de Sucre, Carrera 28 número 5-267, Barrio Puerta Roja, Sincelejo, Colombia.
B Doctorado en Ecología. Departamento de Ciencias Forestales Universidad Nacional de Colombia, Sede Medellín, Calle 59 A N 63-20, Medellín, Colombia.
C Grupo de Biogeografía de la Conservación, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, México City, México.
D Corresponding author: Email: jorge.mercado@unisucre.edu.co
Australian Systematic Botany 33(2) 129-136 https://doi.org/10.1071/SB18058
Submitted: 21 September 2018 Accepted: 7 July 2019 Published: 5 February 2020
Abstract
The Capparaceae are a family of plants associated mainly with dry areas, which have produced climatic constraints and a limited geographic distribution. This family is considered endemic in the Neotropical seasonally dry forest (NSDF) and, therefore, a model to analyse the NSDF biogeography. We conducted a track analysis of Neotropical species of Capparaceae to identify generalised tracks that recover ancestral biotas of NSDF nuclei, employing 7602 data points for 104 species. Individual tracks were obtained using Prim’s algorithm and generalised tracks were identified using parsimony analysis of endemicity with progressive character elimination. We found six generalised tracks and four panbiogeographic nodes mainly located in the NSDF. Generalised tracks recovered the ancestral biotas of NSDF distributed among the central Andean coast, central inter-Andean valleys (Ecuador), Tarapoto–Quillabamba, Apurimac–Mantaro (Peru) and Piedmont (Bolivia) NSDF nuclei. Also, the pattern of distribution of Capparaceae recovered old connections between northern South America and the inter-Andean valleys. However, we also found generalised tracks located over the Isthmus of Panama and Amazonian–Magdalena valley moist forest, suggesting that the distribution pattern in this family was influenced not only by NSDF climatic constraints, but also by geological events such as the emergence of the Isthmus and Andean uplift.
Additional keywords: ancestral floras, dry forest, generalised tracks, individual tracks, panbiogeographical nodes.
References
Bagley JC, Johnson JB (2014) Phylogeography and biogeography of the lower Central American Neotropics: diversification between two continents and between two seas. Biological Reviews of the Cambridge Philosophical Society 89, 767–790.| Phylogeography and biogeography of the lower Central American Neotropics: diversification between two continents and between two seas.Crossref | GoogleScholarGoogle Scholar | 24495219PubMed |
Brako L, Zarucchi J (1993) ‘Catalogue of the Flowering Plants and Gymnosperm of Peru.’ (Missouri Botanical Garden Press: Saint Louis, MO, USA)
Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R, Naciri Y (2008) The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Molecular Ecology 17, 3147–3159.
| The history of seasonally dry tropical forests in eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae).Crossref | GoogleScholarGoogle Scholar | 18522691PubMed |
Cardinal-McTeague W, Sytsma K, Hall J (2016) Biogeography and diversification of Brassicales: a 103 million year tale. Molecular Phylogenetics and Evolution 99, 204–224.
| Biogeography and diversification of Brassicales: a 103 million year tale.Crossref | GoogleScholarGoogle Scholar | 26993763PubMed |
Collevatti R, de Castro T, de Souza Lima J, de Campos Telles M (2012) Phylogeography of Tibouchina papyrus (Pohl) Toledo (Melastomataceae), an endangered tree species from rocky savannas, suggests bidirectional expansion due to climate cooling in the Pleistocene. Ecology and Evolution 2, 1024–1035.
| Phylogeography of Tibouchina papyrus (Pohl) Toledo (Melastomataceae), an endangered tree species from rocky savannas, suggests bidirectional expansion due to climate cooling in the Pleistocene.Crossref | GoogleScholarGoogle Scholar | 22837846PubMed |
Cornejo X, Iltis HH (2008a) The reinstatement of Capparidastrum (Capparaceae). Harvard Papers in Botany 13, 229–236.
| The reinstatement of Capparidastrum (Capparaceae).Crossref | GoogleScholarGoogle Scholar |
Cornejo X, Iltis HH (2008b) A revision of Colicodendron (Capparaceae). Journal of the Botanical Research Institute of Texas 2, 75–93.
Cornejo X, Iltis HH (2008c) A revision of the American species of the genus Crateva (Capparaceae). Harvard Papers in Botany 13, 121–135.
| A revision of the American species of the genus Crateva (Capparaceae).Crossref | GoogleScholarGoogle Scholar |
Cornejo X, Iltis HH (2008d) Two new genera of Capparaceae: Sarcotoxicum and Mesocapparis stat. nov., and the reinstatement of Neocalyptrocalyx. Harvard Papers in Botany 13, 103–116.
| Two new genera of Capparaceae: Sarcotoxicum and Mesocapparis stat. nov., and the reinstatement of Neocalyptrocalyx.Crossref | GoogleScholarGoogle Scholar |
Cornejo X, Iltis HH (2010) Lectotypification and a new combination in Cynophalla (Capparaceae). Rodriguésia 61, 153–155.
| Lectotypification and a new combination in Cynophalla (Capparaceae).Crossref | GoogleScholarGoogle Scholar |
Cornejo X, Iltis H (2012) Capparaceae. In ‘La flora de Jalisco y áreas colindantes’. (Eds S Carvajal, LM Gonzales-Villareal) pp. 1–71. (Instituto de Botánica, Universidad de Guadalajara: Jalisco, México)
Cornejo X, Iltis HH, Tomb AS (2008) Anisocapparis y Monilicarpa: dos nuevos géneros de Capparaceae de América del Sur. Journal of the Botanical Research Institute of Texas 2, 61–74.
Cornejo X, Maciel JR, Marques JS, Neto RLS, Costa-e-Silva MB (2016) Capparaceae A. Juss. In ‘Lista de especies da flora do Brasil’. (Institute of Research Rio de Janeiro Botanical Garden) Available at http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB100861 [Verified January 2018]
Coulleri JP, Ferrucci MS (2012) Biogeografía histórica de Cardiospermum y Urvillea (Sapindaceae) en América: paralelismos geográficos e históricos con los bosques secos estacionales neotropicales. Boletín de la Sociedad Argentina de Botánica 47, 103–117.
Croizat L (Ed.) (1952) Phytogeography: its purpose, methods and nature. In ‘Manual of Phytogeography: an Account of Plant-Dispersal throughout the World’. pp. 526–540. (Springer: Dordrecht, Netherlands)
Croizat L (1958) ‘Panbiogeography.’ (Published by the author: Caracas, Venezuela)
DRYFLOR (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353, 1383–1387.
| Plant diversity patterns in neotropical dry forests and their conservation implications.Crossref | GoogleScholarGoogle Scholar | 27708031PubMed |
Echeverry A, Morrone JJ (2010) Parsimony analysis of endemicity as a panbiogeographical tool: an analysis of Caribbean plant taxa. Biological Journal of the Linnean Society. Linnean Society of London 101, 961–976.
| Parsimony analysis of endemicity as a panbiogeographical tool: an analysis of Caribbean plant taxa.Crossref | GoogleScholarGoogle Scholar |
Flantua S, Hooghiemstra H (2018) Historical connectivity and mountain biodiversity. In ‘Mountains, Climate and Biodiversity’. (Eds C Hoorn, A Perrigo, A Antonelli) pp. 171–185. (Wiley-Blackwell: Oxford, UK)
Gentry A (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69, 557–593.
| Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny?Crossref | GoogleScholarGoogle Scholar |
Gentry A (1993) ‘A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru): with Supplementary Notes on Herbaceous Taxa.’ (Conservations International: Washington, DC, USA)
Gentry A (1995) Diversity and floristic composition of neotropical dry forests. In ‘Seasonally Dry Tropical Forests’. (Eds SH Bullock, HA Mooney, E Medina) pp. 146–194. (Cambridge University Press: Cambridge, UK)
Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.
| TNT version 1.5, including a full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |
Goloboff P, Farris J, Nixon K (2008) TNT, a free program for phylogeny analysis. Cladistics 24, 774–786.
| TNT, a free program for phylogeny analysis.Crossref | GoogleScholarGoogle Scholar |
Hazzi NA, Moreno JS, Ortiz-Movliav C, Palacio RD (2018) Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proceedings of the National Academy of Sciences of the United States of America 115, 7985–7990.
| Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes.Crossref | GoogleScholarGoogle Scholar | 30018064PubMed |
Heads M (2004) What is a node? Journal of Biogeography 31, 1883–1891.
| What is a node?Crossref | GoogleScholarGoogle Scholar |
Herazo-Vitola F, Mendoza-Cifuentes H, Mercado-Gómez J (2017) Estructura y composición florística del bosque seco tropical en los Montes de María (Sucre – Colombia). Ciencia y Desarrollo 8, 79–90.
Holdridge LR (1978) ‘Ecología basada en zonas de vida.’ (Instituto Interamericado de Ciencias Agricolas: San José, Costa Rica)
Holmgren P, Holmgren N, Barnett L (1990) ‘Index Herbariorum. Part I: the Herbaria of the World’, 8th edn. (International Association for Plant Taxonomy, The New York Botanical Garden: Bronx, NY, USA.)
Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931.
| Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity.Crossref | GoogleScholarGoogle Scholar | 21071659PubMed |
Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences of the United States of America 103, 10334–10339.
| Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes.Crossref | GoogleScholarGoogle Scholar | 16801546PubMed |
Lehner B, Grill G (2013) Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes 27, 2171–2186.
| Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems.Crossref | GoogleScholarGoogle Scholar |
Linares-Palomino R (2006) Phytogeography and floristics of seasonally dry tropical forests in Peru. In ‘Neotropical Savannas and Seasonally Dry Forests Plant Diversity, Biogeography, and Conservation’. (Eds RT Pennington, GP Lewis, JA Ratter) pp. 257–279. (CRS Press: Boca Raton, FL, USA)
Linares-Palomino R, Pennington RT, Bridgewater S (2003) The phytogeography of the seasonally dry tropical forests in equatorial Pacific South America. Candollea 58, 473–499.
Linares-Palomino R, Oliveira-Filho AT, Pennington RT (2011) Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In ‘Seasonally Dry Tropical Forests’. (Eds R Dirzo, HS Young, HA Mooney, G Ceballos) pp. 3–21. (Island Press: Washington, DC, USA)
Mercado Gómez JD, Escalante T (2019) Areas of endemism of the Neotropical species of Capparaceae. Biological Journal of the Linnean Society. Linnean Society of London 126, 507–520.
| Areas of endemism of the Neotropical species of Capparaceae.Crossref | GoogleScholarGoogle Scholar |
Mogni V, Oakley J, Prado D (2015) The distribution of woody legumes in neotropical dry forests: the Pleistocene arc theory 20 years on. Edinburgh Journal of Botany 72, 35–60.
| The distribution of woody legumes in neotropical dry forests: the Pleistocene arc theory 20 years on.Crossref | GoogleScholarGoogle Scholar |
Møller J, León Y (1999) ‘Catalogue of Vascular Plants of Ecuador.’ (Ed. V Hollowel) (Missouri Botanical Garden Press: St Louis, MO, USA)
Morrone J (2000) What is the Chacoan subregion? Neotrópica 46, 51–68.
Morrone JJ (2009) ‘Evolutionary Biogeography: an Integrative Approach with Case Studies.’ (Columbia University Press: New York, NY, USA)
Morrone J (2014a) Parsimony analysis of endemicity (PAE) revisited. Journal of Biogeography 41, 842–854.
| Parsimony analysis of endemicity (PAE) revisited.Crossref | GoogleScholarGoogle Scholar |
Morrone JJ (2014b) Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota. Cladistics 30, 202–214.
| Cladistic biogeography of the Neotropical region: identifying the main events in the diversification of the terrestrial biota.Crossref | GoogleScholarGoogle Scholar |
Morrone J (2015) Track analysis beyond panbiogeography. Journal of Biogeography 42, 413–425.
| Track analysis beyond panbiogeography.Crossref | GoogleScholarGoogle Scholar |
Olson D, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E, D’Amico J, Itoua I, Strand H, Morrison J, Loucks C, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938.
| Terrestrial ecoregions of the world: a new map of life on Earth.Crossref | GoogleScholarGoogle Scholar |
Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK, Butterworth CA (2004) Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 515–538.
| Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification.Crossref | GoogleScholarGoogle Scholar | 15212100PubMed |
Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology Evolution and Systematics 40, 437–457.
| Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests.Crossref | GoogleScholarGoogle Scholar |
Pizano C, Gonzalez R, Gonzalesz M, Castro-Lima R, Rodriguez N, Idarraga A, Vargas W, Vergara-Varela H, Castaño-Naranjo A, Devia W, Rojas A, Cuadros H, Lazaro-Toro J (2014) Plantas de los bosques secos de Colombia. In ‘El bosque seco tropical en Colombia’. (Eds C Pizano, H García) pp. 37–48. (Instituto de Investigaciones Alexander von Humbolt: Bogotá, DC, Colombia)
Prado E (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinburgh Journal of Botany 57, 437–461.
| Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit.Crossref | GoogleScholarGoogle Scholar |
Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden 80, 902–927.
| Patterns of species distributions in the dry seasonal forests of South America.Crossref | GoogleScholarGoogle Scholar |
Quijano-Abril MA, Mejía-Franco FG, Callejas-Posada R (2014) Análisis panbiogeográfico de Enckea (Piperaceae), un pequeño clado de bosques secos en la filogenia de un gran género de bosques húmedos. Revista Mexicana de Biodiversidad 85, 98–107.
| Análisis panbiogeográfico de Enckea (Piperaceae), un pequeño clado de bosques secos en la filogenia de un gran género de bosques húmedos.Crossref | GoogleScholarGoogle Scholar |
Rojas-Parra C (2007) Una herramienta automatizada para realizar análisis panbiogeográficos. Biogeografía 1, 31–33.
Ruiz Zapata T (2005) Capparis L. (Capparoideae-Capparaceae) en el estado Trujillo, Venezuela. Ernestia 15, 27–50.
Ruiz-Zapata T (2006) Capparis L. subgénero Calanthea DC. en Venezuela. Ernstia 16, 113–127.
Sanmartín-Sierra DR, Angarita-Hernándeza DF, Mercado-Gómez JD (2016) Estructura y composición florística del bosque seco tropical de Sanguaré–Sucre (Colombia). Ciencia y Desarrollo 7, 43–56.
| Estructura y composición florística del bosque seco tropical de Sanguaré–Sucre (Colombia).Crossref | GoogleScholarGoogle Scholar |
Särkinen T, Pennington RT, Lavin M, Simon MF, Hughes CE (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39, 884–900.
| Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests.Crossref | GoogleScholarGoogle Scholar |
Sarmiento G (1975) The dry plant formations of South America and their floristic connections. Journal of Biogeography 2, 233–251.
| The dry plant formations of South America and their floristic connections.Crossref | GoogleScholarGoogle Scholar |
Sedgewick R, Wayne K (2011) ‘Algorithms.’ (Addison-Wesley: Boston, MA, USA)
Smith N, Mori SA, Henderson A, Stevenson DW, Heald SV (2004) ‘Flowering Plants of the Neotropics.’ (Princeton University Press: Princeton, NJ, USA)
Vavrek M (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica 14, 1–16.
Whitmore T, Prance G (1987) ‘Biogeography and Quaternary history in Tropical Latin America.’ (Oxford University Press: Oxford. UK).