Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

A South American fossil relative of Phyllocladus: Huncocladus laubenfelsii gen. et sp. nov. (Podocarpaceae), from the early Eocene of Laguna del Hunco, Patagonia, Argentina

Ana Andruchow-Colombo https://orcid.org/0000-0003-2942-5603 A B D , Peter Wilf C and Ignacio H. Escapa A B
+ Author Affiliations
- Author Affiliations

A Museo Paleontológico Egidio Feruglio, Avenida Fontana 140, Trelew 9100, Chubut, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina.

C Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.

D Corresponding author. Email: aandruchow@mef.org.ar

Australian Systematic Botany 32(4) 290-309 https://doi.org/10.1071/SB18043
Submitted: 3 July 2018  Accepted: 8 April 2019   Published: 16 July 2019

Abstract

Huncocladus laubenfelsii gen. et sp. nov. is described from the early Eocene (52 million years old) Laguna del Hunco site in Patagonia, Argentina, on the basis of a compression fossil with cuticle remains. The taxon has several similarities with Phyllocladus, together with characters that are absent in extant Phyllocladus species but are otherwise typical of the enclosing scale-leaved clade. Consequently, Huncocladus is interpreted as a relative of Phyllocladus, possibly belonging to its stem group. This view is supported by a phylogenetic analysis of Podocarpaceae, which recovers Huncocladus as sister to Phyllocladus within the here-termed phyllocladoid clade (Phyllocladus + Huncocladus). Huncocladus laubenfelsii is the first macrofossil record of the phyllocladoid lineage in South America or anywhere in the western hemisphere, vastly extending its historical range and constituting an additional lineage shared between Eocene Patagonia and extant and extinct Australasian and South-east Asian rainforests. The disappearance of phyllocladoids from South America adds to the general extinction pattern described previously for southern hemisphere Podocarpaceae, associated with the family’s low drought tolerance in the face of climate change (i.e. aridification). Huncocladus is the oldest record of the phyllocladoids, and it represents a new reference point for temporal calibration and biogeographic inference for the evolution of conifers and Australasian rainforests.

Additional keywords: Australasia, Chubut province, fossil rainforests, Gondwanan connection, phylloclades, phyllocladoid lineage.


References

Andruchow-Colombo A, Escapa IH, Carpenter RJ, Hill RS, Iglesias A, Abarzua AM, Wilf P (2019) Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina. Alcheringa 43, 127–145.
Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Aragón E, Mazzoni MM (1997) Geología y estratigrafía del complejo volcánico piroclástico del río Chubut medio (Eoceno), Chubut, Argentina. Revista de la Asociación Geológica Argentina 52, 243–256.

Archangelsky S, Romero EJ (1974) Polen de gimnospermas (coníferas) del Cretácico Superior y Paleoceno de Patagonia. Ameghiniana 11, 217–236.

Askin RA (2000) Spores and pollen from the McMurdo Sound Erratics, Antarctica. In ‘Paleobiology and Paleoenvironments of Eocene rocks, McMurdo Sound, East Antarctica’. (Eds SD Stilwell, RM Feldman) Vol. 76, pp. 161–181. (American Geophysical Union: Washington, DC, USA)

Baldoni AM (1992) Palynology of the lower Lefipán Formation (Upper Cretaceous) of Barranca de los Perros, Chubut Province, Argentina. Part I. Cryptogam spores and gymnosperm pollen. Palynology 16, 117–136.
Palynology of the lower Lefipán Formation (Upper Cretaceous) of Barranca de los Perros, Chubut Province, Argentina. Part I. Cryptogam spores and gymnosperm pollen.Crossref | GoogleScholarGoogle Scholar |

Barbacka M (1994) Komlopteris Barbacka, gen. nov., a segregate from Pachypteris Brongniart. Review of Palaeobotany and Palynology 83, 339–349.
Komlopteris Barbacka, gen. nov., a segregate from Pachypteris Brongniart.Crossref | GoogleScholarGoogle Scholar |

Beaman JH, Beaman RS (1998) ‘The Plants of Mount Kinabalu 3. Gymnosperms and Non-orchid Monocotyledons.’ (Natural History Publications (Borneo): Kota Kinabalu, Malaysia)

Berggren B (1980) Anatomy of the phylloclades of Phyllocladus hypophyllus. Botaniska Notiser 133, 189–203.

Berry EW (1903) The American species referred to Thinfeldia. Bulletin of the Torrey Botanical Club 30, 438–445.
The American species referred to Thinfeldia.Crossref | GoogleScholarGoogle Scholar |

Berry EW (1925) A Miocene flora from Patagonia. Johns Hopkins University Studies in Geology 6, 183–251.

Berry EW (1937) An Upper Cretaceous flora from Patagonia. Johns Hopkins University Studies in Geology 12, 11–32.

Bessey CE (1907) A synopsis of plant phyla. University of Nebraska Studies 7, 275–373.

Biffin E, Brodribb TJ, Hill RS, Thomas P, Lowe AJ (2012) Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings. Biological Sciences 279, 341–348.
Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation.Crossref | GoogleScholarGoogle Scholar | 21653584PubMed |

Bowman VC, Francis JE, Askin RA, Riding JB, Swindles GT (2014) Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 408, 26–47.
Latest Cretaceous–earliest Paleogene vegetation and climate change at the high southern latitudes: palynological evidence from Seymour Island, Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |

Brea M (1998) Análisis de los anillos de crecimiento en leños fósiles de coníferas de la Formación La Meseta, Isla Seymour (Marambio), Antártida. In ‘Paléogeno de América del Sur y de la Península Antártica’. (Ed. S Casadío) pp.163–175. (Asociación Paleontológica Argentina: Buenos Aires, Argentina)

Brodribb TJ (2011) A functional analysis of podocarp ecology. In ‘Ecology of the Podocarpaceae in Tropical Forests’. (Eds BL Turner, LA Cernusak) pp. 165–175. (Smithsonian Institution Scholarly Press: Washington, DC, USA)

Brodribb TJ, Hill RS (1997) Light response characteristics of a morphologically diverse group of southern hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110, 10–17.
Light response characteristics of a morphologically diverse group of southern hemisphere conifers as measured by chlorophyll fluorescence.Crossref | GoogleScholarGoogle Scholar |

Brodribb TJ, Hill RS (2004) The rise and fall of the Podocarpaceae in Australia: a physiological explanation. In ‘The Evolution of Plant Physiology’. (Eds AR Hemsley, I Poole) pp. 381–399. (Academic Press: London, UK)

Brodribb TJ, Holbrook NM (2005) Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiology 137, 1139–1146.
Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer.Crossref | GoogleScholarGoogle Scholar | 15734905PubMed |

Carpenter RJ (1991) Palaeovegetation and environment at Cethana, Tasmania. PhD Thesis, University of Tasmania, Hobart, Tas., Australia.

Carvalho MR, Wilf P, Hermsen EJ, Gandolfo MA, Cúneo NR, Johnson KJ (2013) First record of Todea (Osmundaceae) in South America, from the early Eocene paleorainforest of Laguna del Hunco (Patagonia, Argentina) American Journal of Botany 100, 1831–1848.
First record of Todea (Osmundaceae) in South America, from the early Eocene paleorainforest of Laguna del Hunco (Patagonia, Argentina)Crossref | GoogleScholarGoogle Scholar | 24018858PubMed |

Casamiquela RM (1960) Un pipoideo fósil de Patagonia. Revista del Museo de la Plata (nueva serie), Paleontología 4, 71–123.

Conran JG, Wood GM, Martin PG, Dowd JM, Quinn CJ, Gadek PA, Price RA (2000) Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on analysis of the chloroplast gene rbcL. Australian Journal of Botany 48, 715–724.
Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on analysis of the chloroplast gene rbcL.Crossref | GoogleScholarGoogle Scholar |

Cookson IC (1947) Plant microfossils from the lignites of the Kerguelen Archipelago. British Australian New Zealand Antarctic Research Expedition (1929–31), Reports, series A 2, 129–142.

Cookson IC (1953) The identification of the sporomorph Phyllocladidites with Dacrydium and its distribution in southern Tertiary deposits. Australian Journal of Botany 1, 64–70.
The identification of the sporomorph Phyllocladidites with Dacrydium and its distribution in southern Tertiary deposits.Crossref | GoogleScholarGoogle Scholar |

Cookson IC, Pike KM (1954) The fossil record of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2, 60–68.
The fossil record of Phyllocladus and two other podocarpaceous types in Australia.Crossref | GoogleScholarGoogle Scholar |

Culmsee H, Pitopang R, Mangopo H, Sabir S (2011) Tree diversity and phytogeographical patterns of tropical high mountain rain forests in central Sulawesi, Indonesia. Biodiversity and Conservation 20, 1103–1123.
Tree diversity and phytogeographical patterns of tropical high mountain rain forests in central Sulawesi, Indonesia.Crossref | GoogleScholarGoogle Scholar |

de Laubenfels DJ (1969a) A revision of the Malesian and Pacific rainforest conifers, I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50, 315–369.
A revision of the Malesian and Pacific rainforest conifers, I. Podocarpaceae, in part.Crossref | GoogleScholarGoogle Scholar |

de Laubenfels DJ (1969b) A revision of the Malesian and Pacific rainforest conifers, I. podocarpaceae, in part. Journal of the Arnold Arboretum 50, 274–314.

de Laubenfels DJ (1988) Podocarpaceae. In ‘Flora Malesiana, Series 1’. Vol. 10, pp. 351–419. (Kluwer Academic Publishers: Dordrecht, Netherlands)

Deane H (1925) Fossil leaves from the Open Cut, State Brown Coal Mine, Morwell. Records of the Geological Survey of Victoria 4, 489–492.

Dolgopol de Sáez M (1941) Noticias sobre peces fósiles Argentinos, Siluroideos Terciarios del Chubut. Notas del Museo de la Plata 6, 451–457.

Dunn RE, Strömberg CA, Madden RH, Kohn MJ, Carlini AA (2015) Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science 347, 258–261.
Linked canopy, climate, and faunal change in the Cenozoic of Patagonia.Crossref | GoogleScholarGoogle Scholar | 25593182PubMed |

Eklund H, Cantrill DJ, Francis JE (2004) Late Cretaceous plant mesofossils from Table Nunatak, Antarctica. Cretaceous Research 25, 211–228.
Late Cretaceous plant mesofossils from Table Nunatak, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Enright NJ, Hill RS, Veblen TT (1995) The Southern conifers: an introduction. In ‘Ecology of the Southern Conifers’. (Eds. NJ Enright, RS Hill) pp. 1–9. (Smithsonian Institution Press: Washington, DC, USA)

Farjon A (2010) ‘A Handbook of the World’s Conifers.’ (Brill: Leiden, Netherlands)

Ferguson DK (1967) On the phytogeography of the Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 3, 73–110.
On the phytogeography of the Coniferales in the European Cenozoic.Crossref | GoogleScholarGoogle Scholar |

Fidalgo P, Smith DR (1987) A fossil Siricidae (Hymenoptera) from Argentina. Entomological News 98, 63–66.

Fletcher TL, Cantrill DL, Moss PT, Salisbury SW (2014) A new species of Protophyllocladoxylon from the Upper Cretaceous (Cenomanian–Turonian) of the Winton Formation, central-western Queensland, Australia. Review of Palaeobotany and Palynology 208, 43–49.
A new species of Protophyllocladoxylon from the Upper Cretaceous (Cenomanian–Turonian) of the Winton Formation, central-western Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Florin R (1931) Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungl. Svenska Vetenskapsakademiens Handlingar 10, 1–588.

Florin R (1940) The Tertiary fossil conifers of south Chile and their phytogeographical significance. Kungl. Svenska Vetenskapsakademiens Handlingar 19, 1–107.

Florin R (1963) The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20, 121–312.

Gandolfo MA, Hermsen EJ (2017) Ceratopetalum (Cunoniaceae) fruits of Australasian affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina. Annals of Botany 119, 507–516.

Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, González CC, Wilf P, Cúneo NR, Johnson KJ (2011) Oldest known Eucalyptus macrofossils are from South America. PLoS One 6, e21084
Oldest known Eucalyptus macrofossils are from South America.Crossref | GoogleScholarGoogle Scholar | 21738605PubMed |

Goloboff PA (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415–428.
Analyzing large data sets in reasonable times: solutions for composite optima.Crossref | GoogleScholarGoogle Scholar |

Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Caldistics 32, 221–238.
TNT version 1.5, including a full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |

Goloboff PA, Farris J, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.

Golovneva LB, Nosova NB (2012) ‘Albian–Cenomanian Flora of Western Siberia.’ (Maraphon: Saint Petersburg, Russia) [In Russian]

Gonzales-Salcedo PV (2001) Floral diversity and vegetation zones of the northern slope of Mt Amuyao, Mountain Province, Luzon, Philippines. Asia Life Sciences 10, 119–157.

Gothan W (1905) Zur anatomie lebender und fossiler Gymnospermen-Hölzer. Könglich Preußische Geologische Landesanst. Bergakademie 44, 1–108.

Greenwood DR, Hill CR, Conran JG (2013) Prumnopitys anglica sp. nov. (Podocarpaceae) from the Eocene of England. Taxon 62, 565–580.
Prumnopitys anglica sp. nov. (Podocarpaceae) from the Eocene of England.Crossref | GoogleScholarGoogle Scholar |

Heredia ME, Paez MM, Guerstein GR, Parras A (2012) Palinología del Miembro Gran Bajo de la Formación Bajo San Julián (Oligoceno tardío) en su localidad tipo, Santa Cruz, Argentina: consideraciones paleoambientales. Ameghiniana 49, 473–496.
Palinología del Miembro Gran Bajo de la Formación Bajo San Julián (Oligoceno tardío) en su localidad tipo, Santa Cruz, Argentina: consideraciones paleoambientales.Crossref | GoogleScholarGoogle Scholar |

Hermsen EJ, Gandolfo MA, Zamaloa MC (2012) The fossil record of Eucalyptus in Patagonia. American Journal of Botany 99, 1356–1374.
The fossil record of Eucalyptus in Patagonia.Crossref | GoogleScholarGoogle Scholar | 22859652PubMed |

Hill RS (1988) A re-investigation of Nothofagus muelleri (Ett.) Paterson and Cinnamomum nuytsii Ett. from the late Eocene of Vegetable Creek. Alcheringa 12, 221–231.
A re-investigation of Nothofagus muelleri (Ett.) Paterson and Cinnamomum nuytsii Ett. from the late Eocene of Vegetable Creek.Crossref | GoogleScholarGoogle Scholar |

Hill RS (1989) New species of Phyllocladus (Podocarpaceae) macrofossils from southeastern Australia. Alcheringa 13, 193–208.
New species of Phyllocladus (Podocarpaceae) macrofossils from southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hill RS (1991) Tertiary Nothofagus (Fagaceae) macrofossils from Tasmania and Antarctica and their bearing on the evolution of the genus. Botanical Journal of the Linnean Society 105, 73–112.
Tertiary Nothofagus (Fagaceae) macrofossils from Tasmania and Antarctica and their bearing on the evolution of the genus.Crossref | GoogleScholarGoogle Scholar |

Hill RS (1994) The history of selected Australian taxa. In ‘History of the Australian Vegetation: Cretaceous to Recent’. (Ed. RS Hill) p. 390–419. (Cambridge University Press: Cambridge, UK)

Hill RS, Brodribb TJ (1999) Southern conifers in time and space. Australian Journal of Botany 47, 639–696.
Southern conifers in time and space.Crossref | GoogleScholarGoogle Scholar |

Hill RS, Carpenter RJ (1989) Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13, 89–102.
Tertiary gymnosperms from Tasmania: Cupressaceae.Crossref | GoogleScholarGoogle Scholar |

Hill RS, Macphail MK (1985) A fossil flora from Plio-Pleistocene mudstones at Regatta Point, Tasmania. Australian Journal of Botany 33, 497–517.
A fossil flora from Plio-Pleistocene mudstones at Regatta Point, Tasmania.Crossref | GoogleScholarGoogle Scholar |

Hill RS, Macphail MK, Jordan GJ (2001) Macrofossils associated with the fossil fern spore Cyatheacidites annulatus and their significance for southern hemisphere biogeography. Review of Palaeobotany and Palynology 116, 195–202.
Macrofossils associated with the fossil fern spore Cyatheacidites annulatus and their significance for southern hemisphere biogeography.Crossref | GoogleScholarGoogle Scholar |

Johns RJ (1976) A provisional classification of the montane vegetation of New Guinea. Science in New Guinea 4, 105–117.

Johns RJ, Shea GA, Vink W, Puradyatmika P (2007) Montane vegetation of Papua. In ‘The Ecology of Papua. Part Two’. (Eds AJ Marshall, BM Beehler) pp. 977–1024. (Periplus: Singapore)

Jordan GJ, Hill RS (1999) The phylogenetic affinities of Nothofagus (Nothofagaceae) leaf fossils based on combined molecular and morphological data. International Journal of Plant Sciences 160, 1177–1188.
The phylogenetic affinities of Nothofagus (Nothofagaceae) leaf fossils based on combined molecular and morphological data.Crossref | GoogleScholarGoogle Scholar | 10568786PubMed |

Jordan GJ, Carpenter RJ, Bannister JM, Lee DE, Mildenhall DC, Hill RS (2011) High conifer diversity in Oligo-Miocene New Zealand. Australian Journal of Botany 24, 121–136.

Kelch D (1997) The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22, 113–131.
The phylogeny of the Podocarpaceae based on morphological evidence.Crossref | GoogleScholarGoogle Scholar |

Keng H (1973) On the family Phyllocladaceae. Taiwania 18, 142–145.

Keng H (1974) The phylloclade of Phyllocladus and its possible bearing on the branch systems of progymnosperms. Annals of Botany 38, 757–764.
The phylloclade of Phyllocladus and its possible bearing on the branch systems of progymnosperms.Crossref | GoogleScholarGoogle Scholar |

Keng H (1978) The genus Phyllocladus (Phyllocladaceae). Journal of the Arnold Arboretum 59, 249–273.
The genus Phyllocladus (Phyllocladaceae).Crossref | GoogleScholarGoogle Scholar |

Keng H (1979) The phylloclade of Phyllocladus and its possible bearing on the foliate organs of coniferophytes. Botanical Bulletin of Academia Sinica 20, 9–18.

Kershaw AP, Martin HA, McEwen Mason JRC (1994) The Neogene: a period of transition. In ‘History of the Australian Vegetation’. (Ed. RS Hill) pp. 299–327. (Cambridge University Press: Cambridge, UK)

Knopf P, Schulz C, Little DP, Stützel T, Stevenson DW (2012) Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28, 271–299.
Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data.Crossref | GoogleScholarGoogle Scholar |

Kooyman RM, Wilf P, Barreda VD, Carpenter RJ, Jordan GJ, Sniderman JMK, Allen A, Brodribb TJ, Crayn D, Feild TS, Laffan SW, Lusk CH, Rossetto M, Weston PH (2014) Paleo-Antarctic rainforest into the modern Old World Tropics: the rich past and threatened future of the ‘southern wet forest survivors’. American Journal of Botany 101, 2121–2135.
Paleo-Antarctic rainforest into the modern Old World Tropics: the rich past and threatened future of the ‘southern wet forest survivors’.Crossref | GoogleScholarGoogle Scholar | 25480709PubMed |

Krasnova AN (1910) ‘Nachatki Tretichnoi Flora Yuga Rossii.’ (Pečatnik: Kharkiv, Russia) [In Russian]

Kräusel R (1939) Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wusten Agyptens, IV. Die fossilen Floren Agyptens, 3. Die fossilen Pilanzen Agyptens E-L. Abhandlungen der Bayerischen Akademie der Wissenchaften Mathematisch-Naturwissenchaftliche Abteilung 47, 16–18.

Kryshtofovich AN (1937) Çretaceous flora of Sakhalin, Mgach and Polovinka. Transaction of the Far-Eastern Branch Academie of Sciences USSR Geological Series 2, 1–103.

Kryshtofovich AN, Baikovskaja TN (1960) ‘Cretaceous Flora of Sakhalin.’ (Komarov Botanical Institute, Academy of Sciences USSR: Leningrad, Russia) [In Russian]

Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America 109, 16217–16221.
Hemisphere-scale differences in conifer evolutionary dynamics.Crossref | GoogleScholarGoogle Scholar | 22988083PubMed |

Leslie AB, Beaulieu JM, Holman G, Campbell CS, Mei W, Raubeson LR, Mathews S (2018) An overview of extant conifer evolution from the perspective of the fossil record. American Journal of Botany 105, 1531–1544.
An overview of extant conifer evolution from the perspective of the fossil record.Crossref | GoogleScholarGoogle Scholar | 30157290PubMed |

Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ (2014) Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One 9, e107679
Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes.Crossref | GoogleScholarGoogle Scholar | 25541705PubMed |

Macphail MK, Cantrill DJ (2006) Age and implications of the Forest Bed, Falkland Islands, southwest Atlantic Ocean: evidence from fossil pollen and spores. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 602–629.
Age and implications of the Forest Bed, Falkland Islands, southwest Atlantic Ocean: evidence from fossil pollen and spores.Crossref | GoogleScholarGoogle Scholar |

Macphail MK, Partridge AD, Truswell EM (1999) Fossil pollen records of the problematical primitive angiosperm family Lactoridaceae in Australia. Plant Systematics and Evolution 214, 199–210.
Fossil pollen records of the problematical primitive angiosperm family Lactoridaceae in Australia.Crossref | GoogleScholarGoogle Scholar |

Maheshwari HK (1986) Thinfeldia indica Feistmantel and associated plant fossils from Tiruchirapalli District, Tamil Nadu. Palaeobotanist 35, 13–21.

Mays C (2015) A Late Cretaceous (Cenomanian–Turonian) south polar palynoflora from the Chatham Islands, New Zealand. Memoirs of the Association of Australasian Palaeontologists 47, 1–92.

McLoughlin S, Hill RS (1996) The succession of Western Australian Phanerozoic floras. In ‘Gondwanan Heritage: Past, Present and Future of the Western Australian Biota’. (Eds SD Hopper, JA Chappill, MS Harvey, A Main, BY Main) pp. 61–80. (Surrey Beatty: Sydney, NSW, Australia)

McLoughlin S, McNamara K (2001) ‘Ancient Floras of Western Australia.’ (Western Australian Museum: Perth, WA, Australia)

McLoughlin S, Carpenter RJ, Jordan GJ, Hill RS (2008) Seed ferns survived the end-Cretaceous mass extinction in Tasmania. American Journal of Botany 95, 465–471.
Seed ferns survived the end-Cretaceous mass extinction in Tasmania.Crossref | GoogleScholarGoogle Scholar | 21632371PubMed |

Menéndez CA (1956) ‘Protophyllocladoxylon cortaderitaensis’ sp. nov. tronco fósil del Triásico de Barreal (Provincia de San Juan). Revista de la Asociación Geológica Argentina 11, 273–280.

Merkhofer L, Wilf P, Haas MT, Kooyman RM, Sack L, Scoffoni C, Cúneo NR (2015) Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics. American Journal of Botany 102, 1160–1173.
Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics.Crossref | GoogleScholarGoogle Scholar | 26199371PubMed |

Mildenhall DC, Pocknall DT (1989) ‘Miocene–Pleistocene Spores and Pollen from Central Otago, South Island, New Zealand.’ (New Zealand Geological Survey: Lower Hutt, New Zealand)

Mill RR, Stark Schilling DM (2009) Cuticle micromorphology of Saxegothaea (Podocarpaceae). Botanical Journal of the Linnean Society 159, 58–67.
Cuticle micromorphology of Saxegothaea (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Mirabelli SL, Pujana RR, Marenssi SA, Santillana SN (2018) Conifer fossil woods from the Sobral Formation (lower Paleocene, western Antarctica). Ameghiniana 55, 91–108.
Conifer fossil woods from the Sobral Formation (lower Paleocene, western Antarctica).Crossref | GoogleScholarGoogle Scholar |

Mirbel M (1825) Essai sur la distribution géographique des conifères. Memoirs du Museum d’Histoire Naturelle 13, 28–76.

Molloy BPJ (1996) A new species name in Phyllocladus (Phyllocladaceae) from New Zealand. New Zealand Journal of Botany 34, 287–297.
A new species name in Phyllocladus (Phyllocladaceae) from New Zealand.Crossref | GoogleScholarGoogle Scholar |

Nosova NB, Golovneva LB (2014) The Mesozoic genus Protophyllocladus Berry (Pinopsida). Review of Palaeobotany and Palynology 210, 77–88.
The Mesozoic genus Protophyllocladus Berry (Pinopsida).Crossref | GoogleScholarGoogle Scholar |

Page CN (1990) Phyllocladaceae. In ‘The Families and Genera of Vascular Plants, Pteridophytes and Gymnosperms’. (Eds KU Kramer, PS Green) pp. 317–319. (Springer: Berlin, Germany)

Palazzesi L, Barreda VD, Cuitiño JI, Guler MV, Tellería MC, Ventura Santos R (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature Communications 5, 3558
Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift.Crossref | GoogleScholarGoogle Scholar | 24675482PubMed |

Petrulevičius JF, Nel A (2003) Frenguelliidae, a new family of dragonflies from the earliest Eocene of Argentina (Insecta: Odonata): phylogenetic relationships with Odonata. Journal of Natural History 37, 2909–2917.
Frenguelliidae, a new family of dragonflies from the earliest Eocene of Argentina (Insecta: Odonata): phylogenetic relationships with Odonata.Crossref | GoogleScholarGoogle Scholar |

Petrulevičius JF, Nel A, Voisin JF (2010) A new genus and species of darner dragonfly (Aeshnidae: Odonata) from the lower Eocene of Laguna del Hunco, Patagonia, Argentina. Annales de la Société Entomologique de France 46, 271–275.
A new genus and species of darner dragonfly (Aeshnidae: Odonata) from the lower Eocene of Laguna del Hunco, Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell & Environment 29, 1618–1628.
Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem.Crossref | GoogleScholarGoogle Scholar |

Pocknall DT (1981) Pollen morphology of Phyllocladus L.C. et A.Rich. New Zealand Journal of Botany 19, 259–266.
Pollen morphology of Phyllocladus L.C. et A.Rich.Crossref | GoogleScholarGoogle Scholar |

Pocknall DT (1991) Palynostratigraphy of the Te Kuiti Group (late Eocene–Oligocene), Waikato Basin, New Zealand. New Zealand Journal of Geology and Geophysics 34, 407–417.
Palynostratigraphy of the Te Kuiti Group (late Eocene–Oligocene), Waikato Basin, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Pole M (1992a) Eocene vegetation from Hasties, north-eastern Tasmania. Australian Systematic Botany 5, 431–475.
Eocene vegetation from Hasties, north-eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Pole M (1992b) Early Miocene flora of the Manuherikia Group, New Zealand. 2. Conifers. Journal of the Royal Society of New Zealand 22, 287–302.
Early Miocene flora of the Manuherikia Group, New Zealand. 2. Conifers.Crossref | GoogleScholarGoogle Scholar |

Pole M, Moore PR (2011) A late Miocene leaf assemblage from Coromandel Peninsula, New Zealand, and its climatic implications. Alcheringa 35, 103–121.
A late Miocene leaf assemblage from Coromandel Peninsula, New Zealand, and its climatic implications.Crossref | GoogleScholarGoogle Scholar |

Pujana RR, Santillana SN, Marenssi SA (2014) Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae-dominated forests. Review of Palaeobotany and Palynology 200, 122–137.
Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae-dominated forests.Crossref | GoogleScholarGoogle Scholar |

Pujana RR, Panti C, Cuitiño JI, Massini JLG, Mirabelli SL (2015) A new megaflora (fossil woods and leaves) from the Miocene of southwestern Patagonia. Ameghiniana 52, 350–366.
A new megaflora (fossil woods and leaves) from the Miocene of southwestern Patagonia.Crossref | GoogleScholarGoogle Scholar |

Quinn CJ (1982) Taxonomy of Dacrydium Sol. ex Lamb. emend. de Laub. (Podocarpaceae). Australian Journal of Botany 30, 311–320.
Taxonomy of Dacrydium Sol. ex Lamb. emend. de Laub. (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Quinn CJ (1987) The Phyllocladaceae Keng: a critique. Taxon 36, 559–565.
The Phyllocladaceae Keng: a critique.Crossref | GoogleScholarGoogle Scholar |

Quiroga MP, Mathiasen P, Iglesias A, Mill RR, Premoli AC (2016) Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43, 372–383.
Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography.Crossref | GoogleScholarGoogle Scholar |

Romero EJ (1977) ‘Polen de Gimnospermas y Fagáceas de la Formación Río Turbio (Eoceno), Santa Cruz, Argentina.’ (Centro de Investigaciones en Recursos Geológicos: Buenos Aires, Argentina)

Romero EJ, Hickey LJ (1976) A fossil leaf of Akaniaceae from Paleocene beds in Argentina. Bulletin of the Torrey Botanical Club 103, 126–131.
A fossil leaf of Akaniaceae from Paleocene beds in Argentina.Crossref | GoogleScholarGoogle Scholar |

Sah SCD, Jain KP (1964) Jurassic spores and pollen grains from the Rajmahal Hills, Bihar, India: with a discussion on the age of the Rajmahal Intertrappean Beds. Palaeobotanist 13, 264–290.

Seward AC (1904) ‘Catalogue of the Mesozoic Plants in the Department of Geology, British Museum (Natural History). The Jurassic Flora. II. Liassic and Oolitic Floras of England (excluding the Oolite Plants of the Yorkshire Coast).’ (British Museum (Natural History): London, UK)

Stark Schilling DM, Mill RR (2011) Cuticle micromorphology of Caribbean and Central American species of Podocarpus. International Journal of Plant Sciences 172, 601–631.
Cuticle micromorphology of Caribbean and Central American species of Podocarpus.Crossref | GoogleScholarGoogle Scholar |

Stockey RA, Frevel BJ (1997) Cuticle micromorphology of Prumnopitys Philippi (Podocarpaceae). International Journal of Plant Sciences 158, 198–221.
Cuticle micromorphology of Prumnopitys Philippi (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Stockey RA, Ko H (1988) Cuticle micromorphology of some New Caledonian podocarps. Botanical Gazette 149, 240–252.
Cuticle micromorphology of some New Caledonian podocarps.Crossref | GoogleScholarGoogle Scholar |

Stockey RA, Ko H (1990) Cuticle micromorphology of Dacrydium (Podocarpaceae) from New Caledonia. Botanical Gazette 151, 138–149.
Cuticle micromorphology of Dacrydium (Podocarpaceae) from New Caledonia.Crossref | GoogleScholarGoogle Scholar |

Stockey RA, Ko H, Woltz P (1992) Cuticle micromorphology of Falcatifolium de Laubenfels (Podocarpaceae). International Journal of Plant Sciences 153, 589–601.
Cuticle micromorphology of Falcatifolium de Laubenfels (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Stockey RA, Ko H, Woltz P (1995) Cuticle micromorphology of Parasitaxus de Laubenfels (Podocarpaceae). International Journal of Plant Sciences 156, 723–730.
Cuticle micromorphology of Parasitaxus de Laubenfels (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Stockey RA, Frevel BJ, Woltz P (1998) Cuticle micromorphology of Podocarpus, subgenus Podocarpus, section Scytopodium (Podocarpaceae) of Madagascar and South Africa. International Journal of Plant Sciences 159, 923–940.
Cuticle micromorphology of Podocarpus, subgenus Podocarpus, section Scytopodium (Podocarpaceae) of Madagascar and South Africa.Crossref | GoogleScholarGoogle Scholar |

Tanai T (1979) Late Cretaceous floras from the Kuji district, northeastern Honshu, Japan. Journal of the Faculty of Science, Hokkaido University, Series 4: Geology and Mineralogy 19, 75–136.

Terada K, Ohsawa Asakawa T, Nishida H (2006) Fossil woods from the Loreto Formation of Las Minas, Magallanes (XII) Región, Chile. In ‘Post-Cretaceous Floristic Changes in Southern Patagonia’. (Ed. Nishida H) pp. 91–101. (Faculty of Science and Engineering Chuo University: Tokyo, Japan)

Tomlinson PB, Takaso T, Rattenbury JA (1989) Developmental shoot morphology in Phyllocladus (Podocarpaceae). Botanical Journal of the Linnean Society 99, 223–248.
Developmental shoot morphology in Phyllocladus (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Torres T, Lemoigne Y (1988) Maderas fósiles terciarias de la Formación Caleta Arctowski, Isla Rey Jorge, Antártica. Serie Científica, Instituto Antártico Chileno 37, 69–107.

Vajda V, Linderson H, McLoughlin S (2016) Disrupted vegetation as a response to Jurassic volcanism in southern Sweden. In ‘Mesozoic Biotas of Scandinavia and its Arctic Territories’. (Eds BP Kear, J Lindgren, JH Hurum, J Milàn, V Vajda) pp. 127–147. (The Geological Society of London: London, UK)

Villar de Seoane L, Cúneo NR, Escapa IH, Wilf P, Gandolfo MA (2015) Ginkgoites patagonica (Berry) comb. nov. from the Eocene of Patagonia, last ginkgoalean record in South America. International Journal of Plant Sciences 176, 346–363.
Ginkgoites patagonica (Berry) comb. nov. from the Eocene of Patagonia, last ginkgoalean record in South America.Crossref | GoogleScholarGoogle Scholar |

von Ettingshausen CF (1887) Beiträge zur Kenntniss der Tertiärflora Australiens. Zweite Folge. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 53, 81–142.

von Ettingshausen CF (1888) Contributions to the Tertiary flora of Australia. Memoirs of the Geological Survey of New South Wales Palaeontology 2, 1–189.

Wagstaff SJ (2004) Evolution and biogeography of the austral genus Phyllocladus (Podocarpaceae). Journal of Biogeography 31, 1569–1577.
Evolution and biogeography of the austral genus Phyllocladus (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar |

Wells PM, Hill RS (1989) Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2, 369–386.
Leaf morphology of the imbricate-leaved Podocarpaceae.Crossref | GoogleScholarGoogle Scholar |

Wilf P (2012) Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99, 562–584.
Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae).Crossref | GoogleScholarGoogle Scholar | 22334450PubMed |

Wilf P, Cúneo RN, Johnson KR, Hicks JF, Wing SL, Obradovich JD (2003) High plant diversity in Eocene South America: evidence from Patagonia. Science 300, 122–125.
High plant diversity in Eocene South America: evidence from Patagonia.Crossref | GoogleScholarGoogle Scholar | 12677065PubMed |

Wilf P, Johnson KR, Cúneo RN, Smith ME, Singer BS, Gandolfo MA (2005) Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. American Naturalist 165, 634–650.
Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar | 15937744PubMed |

Wilf P, Little SA, Iglesias A, Zamaloa MC, Gandolfo MA, Cúneo NR, Johnson KR (2009) Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. American Journal of Botany 96, 2031–2047.
Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests.Crossref | GoogleScholarGoogle Scholar | 21622323PubMed |

Wilf P, Cúneo NR, Escapa IH, Pol D, Woodburne MO (2013) Splendid and seldom isolated: the paleobiogeography of Patagonia. Annual Review of Earth and Planetary Sciences 41, 561–603.
Splendid and seldom isolated: the paleobiogeography of Patagonia.Crossref | GoogleScholarGoogle Scholar |

Wilf P, Escapa IH, Cúneo RN, Kooyman RM, Johnson KR, Iglesias A (2014) First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101, 156–179.
First South American Agathis (Araucariaceae), Eocene of Patagonia.Crossref | GoogleScholarGoogle Scholar | 24418576PubMed |

Wilf P, Stevenson DW, Cúneo NR (2016) The last Patagonian cycad, Austrozamia stockeyi gen. et sp. nov., early Eocene of Laguna del Hunco, Chubut, Argentina. Botany 94, 817–829.
The last Patagonian cycad, Austrozamia stockeyi gen. et sp. nov., early Eocene of Laguna del Hunco, Chubut, Argentina.Crossref | GoogleScholarGoogle Scholar |

Wilf P, Donovan MP, Cúneo NR, Gandolfo MA (2017a) The fossil flip–leaves (Retrophyllum, Podocarpaceae) of southern South America. American Journal of Botany 104, 1344–1369.
The fossil flip–leaves (Retrophyllum, Podocarpaceae) of southern South America.Crossref | GoogleScholarGoogle Scholar | 29885237PubMed |

Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR (2017b) Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355, 71–75.
Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae.Crossref | GoogleScholarGoogle Scholar | 28059765PubMed |

Woltz P (1986) Les Podocarpus (s.l.), origines et evolution. Etude des plantules; comparaison avec les familles des conifères de l’hémisphère sud. PhD thesis, Université de Droit, d’Économie et des Sciences d’Aix-Marseille, Marseille, France.

Zamaloa MC, Romero EJ (2005) Neogene palynology of Tierra del Fuego, Argentina: conifers. Alcheringa 29, 113–121.
Neogene palynology of Tierra del Fuego, Argentina: conifers.Crossref | GoogleScholarGoogle Scholar |

Zamaloa MC, Gandolfo MA, González CC, Romero EJ, Cúneo NR, Wilf P (2006) Casuarinaceae from the Eocene of Patagonia, Argentina. International Journal of Plant Sciences 167, 1279–1289.
Casuarinaceae from the Eocene of Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Zhang Y, Wang J, Liu L, Li N (2010) Protophyllocladoxylon jingyuanense sp. nov., a gymnosperm wood of the Serpukhovian (Late Mississippian) from Gansu, northwest China. Acta Geologica Sinica 84, 257–268.
Protophyllocladoxylon jingyuanense sp. nov., a gymnosperm wood of the Serpukhovian (Late Mississippian) from Gansu, northwest China.Crossref | GoogleScholarGoogle Scholar |