Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Insights into speciation and species delimitation of closely related eucalypts using an interdisciplinary approach

Susan Rutherford https://orcid.org/0000-0001-9723-0790
+ Author Affiliations
- Author Affiliations

A Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia.

B Present address: National Herbarium of NSW, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia. Email: susan.rutherford@rbgsyd.nsw.gov.au

Australian Systematic Botany 33(1) 110-127 https://doi.org/10.1071/SB18042
Submitted: 1 July 2018  Accepted: 25 July 2019   Published: 2 January 2020

Abstract

Speciation is a central process in evolutionary biology and is responsible for the diversity of life on Earth. Although there has been much progress in evolutionary research over the past 150 years, understanding the many facets of speciation remains a challenge. In this synthesis, I focus on the use of an interdisciplinary approach to examine speciation and species delimitation in a group of closely related eucalypts called the green ashes (Eucalyptus subgenus Eucalyptus section Eucalyptus). The green ashes comprise tall trees on fertile soils (e.g. the tallest angiosperm in the world, E. regnans), as well as medium trees and mallees on low-nutrient soils. Previous phylogenetic and population-genetics analyses based on genome-wide scans showed that species boundaries in the green ashes are not always consistent with classifications based on morphology and there was evidence of gene flow across lineages. Genomic analyses also suggested that the green ashes were at varying stages of speciation, with some species being highly genetically differentiated, whereas others were at earlier stages on the speciation continuum. A previous common garden study showed that inter-specific differences in seedling traits were significant, with traits such as leaf width being highly plastic across resource treatments for most species. Overall, this synthesis demonstrated that an interdisciplinary approach incorporating phylogenomics, population genomics and a common garden experiment can provide insights into speciation and species delimitation in the green ash eucalypts. Such an approach may be useful in understanding the evolutionary history of other closely related species in Eucalyptus, as well as other groups of organisms.

Additional keywords: common garden experiment, evolution, green ashes, phenotypic plasticity, phylogenomics, population genetics.


References

Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. Journal of Evolutionary Biology 26, 229–246.
Hybridization and speciation.Crossref | GoogleScholarGoogle Scholar | 23323997PubMed |

Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50, 979–995.
The evolution of plant ecophysiological traits: recent advances and future directions.Crossref | GoogleScholarGoogle Scholar |

Allendorf FW, Luikart G (2007) ‘Conservation and the Genetics of Populations.’ (Blackwell Publishing: Malden, MA, USA)

Andrew RL, Wallis IR, Harwood CE, Foley WJ (2010) Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa. Annals of Botany 105, 707–717.
Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa.Crossref | GoogleScholarGoogle Scholar | 20228089PubMed |

Ashton DH (1958) The ecology of Eucalyptus regnans: the species and its frost resistance. Australian Journal of Botany 6, 154–176.
The ecology of Eucalyptus regnans: the species and its frost resistance.Crossref | GoogleScholarGoogle Scholar |

Ashton DH (1975) Studies of flowering behaviour in Eucalyptus regnans F.Muell. Australian Journal of Botany 23, 399–411.
Studies of flowering behaviour in Eucalyptus regnans F.Muell.Crossref | GoogleScholarGoogle Scholar |

Asquith A (1993) Patterns of speciation in the genus Lopidea (Heteroptera: Miridae: Orthotylinae). Systematic Entomology 18, 169–180.
Patterns of speciation in the genus Lopidea (Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Balakrishnan R (2005) Species concepts, species boundaries and species identification: a view from the Tropics. Systematic Biology 54, 689–693.
Species concepts, species boundaries and species identification: a view from the Tropics.Crossref | GoogleScholarGoogle Scholar | 16126664PubMed |

Baldwin JM (1896) A new factor in evolution. American Naturalist 30, 441–451.
A new factor in evolution.Crossref | GoogleScholarGoogle Scholar |

Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics 29, 263–292.
Early evolution of land plants: phylogeny, physiology and ecology of the primary terrestrial radiation.Crossref | GoogleScholarGoogle Scholar |

Baum DA, Shaw KL (1995) Genealogical perspectives on the species problem. In ‘Experimental and Molecular Approaches to Plant Biosystematics’. (Eds PC Hoch, AG Stephenson) pp. 289–303. (Missouri Botanical Garden: Saint Louis, MO, USA)

Bayly MJ (2016) Phylogenetic studies of eucalypts: fossils, morphology and genomes. The Royal Society of Victoria 128, 12–24.
Phylogenetic studies of eucalypts: fossils, morphology and genomes.Crossref | GoogleScholarGoogle Scholar |

Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J (2013) Chloroplast genome analysis of Australian eucalypts: Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69, 704–716.
Chloroplast genome analysis of Australian eucalypts: Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 23876290PubMed |

Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh Y-P, Hahn MW, Nista PM, Jones CD, Kern AD, Dewey CN, Pachter L, Myers E, Langley CH (2007) Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biology 5, e310
Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans.Crossref | GoogleScholarGoogle Scholar | 17988176PubMed |

Belton GS, Prud’homme van Reine WF, Huisman JM, Draisma SGA, Gurgel CFD (2014) Resolving phenotypic plasticity and species designation in the morphologically challenging Caulerpa racemosapeltata complex (Chlorophyta, Caulerpaceae). Journal of Phycology 50, 32–54.
Resolving phenotypic plasticity and species designation in the morphologically challenging Caulerpa racemosapeltata complex (Chlorophyta, Caulerpaceae).Crossref | GoogleScholarGoogle Scholar | 26988007PubMed |

Benson D, McDougall L (1998) Ecology of Sydney plant species. Part 6: dicotyledon family Myrtaceae. Cunninghamia 5, 808–987.

Blackwelder RE (1967) ‘Taxonomy: a Text and Reference Book.’ (Wiley: New York, NY, USA)

Blazey J (1994) A Late Miocene flora from Bacchus Marsh. BSc(Hons) Thesis, School of Botany, University of Melbourne, Vic., Australia.

Booth TH (2017) Going nowhere fast: a review of seed dispersal in eucalypts. Australian Journal of Botany 65, 401–410.
Going nowhere fast: a review of seed dispersal in eucalypts.Crossref | GoogleScholarGoogle Scholar |

Bouvet J-M, Vigneron P, Saya A (2005) Phenotypic plasticity of growth trajectory and ontogenic allometry in response to density for Eucalyptus hybrid clones and families. Annals of Botany 96, 811–821.
Phenotypic plasticity of growth trajectory and ontogenic allometry in response to density for Eucalyptus hybrid clones and families.Crossref | GoogleScholarGoogle Scholar | 16043439PubMed |

Brooker MIH (2000) A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13, 79–148.
A new classification of the genus Eucalyptus L’Hér. (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Brooker MIH, Kleinig DA (2006) ‘Field Guide to Eucalypts’, 3rd edn. (Bloomings Books: Melbourne, Vic., Australia)

Brown AHD, Matheson AC, Eldridge KG (1975) Estimation of the mating system of Eucalyptus obliqua L’Hèrit. by using allozyme polymorphisms. Australian Journal of Botany 23, 931–949.
Estimation of the mating system of Eucalyptus obliqua L’Hèrit. by using allozyme polymorphisms.Crossref | GoogleScholarGoogle Scholar |

Butler JB, Vaillancourt RE, Potts BM, Lee DJ, King GJ, Baten A, Shepherd M, Freeman JS (2017) Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement. BMC Genomics 18, 397
Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement.Crossref | GoogleScholarGoogle Scholar | 28532390PubMed |

Butlin R, Debelle A, Kerth C, Snook RR, Beukeboom LW, Castillo Cajas RF, Diao W, Maan ME, Paolucci S, Weissing FJ, Van De Zande L, Hoikkala A, Geuverink E, Jennings J, Kankare M, Knott KE, Tyukmaeva VI, Zoumadakis C, Ritchie MG, Barker D, Immonen E, Kirkpatrick M, Noor M, Macias Garcia C, Schmitt T, Schilthuizen M (2012) What do we need to know about speciation? Trends in Ecology & Evolution 27, 27–39.
What do we need to know about speciation?Crossref | GoogleScholarGoogle Scholar |

Byrne M (2007) Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Australian Journal of Botany 55, 316–325.
Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora.Crossref | GoogleScholarGoogle Scholar |

Byrne M, Hines B (2004) Phylogeographical analysis of cpDNA variation in Eucalyptus loxophleba (Myrtaceae). Australian Journal of Botany 52, 459–470.
Phylogeographical analysis of cpDNA variation in Eucalyptus loxophleba (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Carroll SP, Hendry AP, Reznick DN, Fox CW (2007) Evolution on ecological time-scales. Functional Ecology 21, 387–393.
Evolution on ecological time-scales.Crossref | GoogleScholarGoogle Scholar |

Carson HL (1985) Unification of speciation theory in plants and animals. Systematic Botany 10, 380–390.
Unification of speciation theory in plants and animals.Crossref | GoogleScholarGoogle Scholar |

Cavender-Bares J, González-Rodrìguez A, Eaton DAR, Hipp AAL, Beulke A, Manos PS (2015) Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Molecular Ecology 24, 3668–3687.
Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach.Crossref | GoogleScholarGoogle Scholar | 26095958PubMed |

Chan CX, Ragan MA (2013) Next-generation phylogenomics. Biology Direct 8, 3
Next-generation phylogenomics.Crossref | GoogleScholarGoogle Scholar | 23339707PubMed |

Chappill JA, Ladiges PY (1996) Phylogenetic analysis of Eucalyptus informal subgenus Symphyomyrtus section Maidenaria. Australian Systematic Botany 9, 71–93.
Phylogenetic analysis of Eucalyptus informal subgenus Symphyomyrtus section Maidenaria.Crossref | GoogleScholarGoogle Scholar |

Chesser RT, Zink RM (1994) Modes of speciation in birds: a test of Lynch’s method. Evolution 48, 490–497.
Modes of speciation in birds: a test of Lynch’s method.Crossref | GoogleScholarGoogle Scholar | 28568302PubMed |

Coates DJ, Byrne M, Moritz C (2018) Genetic diversity and conservation units: dealing with the species–population continuum in the age of genomics. Frontiers in Ecology and Evolution 6, 165
Genetic diversity and conservation units: dealing with the species–population continuum in the age of genomics.Crossref | GoogleScholarGoogle Scholar |

Cracraft J (1983) Species concepts and speciation analysis. In ‘Current Ornithology. Vol. 1’. (Ed. RF Johnson) pp. 159–187. (Plenum Press: New York, NY, USA)

Crisp M, Cook L, Steane D (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 1551–1571.
Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?Crossref | GoogleScholarGoogle Scholar | 15519972PubMed |

Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DMJS (2011) Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Communications 2, 193
Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary.Crossref | GoogleScholarGoogle Scholar | 21326225PubMed |

Cunningham TM (1960) ‘The natural regeneration of Eucalyptus regnans.’ School Forum Bulletin number 1. (Melbourne University: Melbourne, Vic., Australia)

Darwin C (1859) ‘The Origin of Species by Means of Natural Selection.’ (Murray: London, UK)

Darwin CR (1862) ‘On the Various Contrivances by which British and Foreign Orchids are Fertilized by Insects.’ (John Murray: London, UK)

Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews. Genetics 12, 499–510.
Genome-wide genetic marker discovery and genotyping using next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 21681211PubMed |

de Queiroz K (1998) The general lineage concept of species, species criteria and the process of speciation: a conceptual unification and terminological recommendations. In ‘Endless Forms: Species and Speciation’. (Eds DJ Howard, SH Berlocher) pp. 57–75. (Oxford University Press: New York, NY, USA)

de Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |

de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116, 249–254.
Common garden experiments in the genomic era: new perspectives and opportunities.Crossref | GoogleScholarGoogle Scholar | 26486610PubMed |

Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. National Review 6, 361–375.
Phylogenomics and the reconstruction of the tree of life.Crossref | GoogleScholarGoogle Scholar |

Donoghue MJ (1985) A critique of the biological species concept and recommendations for a phylogenetic alternative. The Bryologist 88, 172–181.
A critique of the biological species concept and recommendations for a phylogenetic alternative.Crossref | GoogleScholarGoogle Scholar |

Eckert AJ, Hall BD (2006) Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses. Molecular Phylogenetics and Evolution 40, 166–182.
Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses.Crossref | GoogleScholarGoogle Scholar | 16621612PubMed |

Eldridge KG (1976) Breeding systems. Variation and genetic improvement of tropical eucalypts. In ‘Tropical Trees Variation, Breeding and Conservation’. (Eds J Burley, BT Styles) pp. 101–108. (Academic Press: London, UK)

Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends in Genetics 28, 342–350.
The genomics of speciation-with-gene-flow.Crossref | GoogleScholarGoogle Scholar | 22520730PubMed |

Field DL, Ayre DJ, Whelan RJ, Young AG (2011a) Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida. Heredity 106, 841–853.
Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida.Crossref | GoogleScholarGoogle Scholar | 21063438PubMed |

Field DL, Ayre DJ, Whelan RJ, Young AG (2011b) The importance of premating barriers and the local demographic context for contemporary mating patterns in hybrid zones of Eucalyptus aggregata and Eucalyptus rubida. Molecular Ecology 20, 2367–2379.
The importance of premating barriers and the local demographic context for contemporary mating patterns in hybrid zones of Eucalyptus aggregata and Eucalyptus rubida.Crossref | GoogleScholarGoogle Scholar | 21375638PubMed |

Fielding JM (1956) Notes on the flowering and seeding of Eucalyptus delegatensis and E. fastigata in the Australian Capital Territory. Australian Forestry 20, 40–43.
Notes on the flowering and seeding of Eucalyptus delegatensis and E. fastigata in the Australian Capital Territory.Crossref | GoogleScholarGoogle Scholar |

Flores-Rentería L, Rymer PD, Riegler M (2017) Unpacking boxes: integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts. Molecular Phylogenetics and Evolution 108, 70–87.
Unpacking boxes: integration of molecular, morphological and ecological approaches reveals extensive patterns of reticulate evolution in box eucalypts.Crossref | GoogleScholarGoogle Scholar | 28185948PubMed |

Flot J-F, Blanchot J, Charpy L, Cruaud C, Licuanan WY, Nakano Y, Payri C, Tillier S (2011) Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecology 11, 22
Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization?Crossref | GoogleScholarGoogle Scholar | 21970706PubMed |

Foster SA, McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (2007) Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytologist 175, 370–380.
Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar | 17587385PubMed |

Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ (2013) Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proceedings. Biological Sciences 280, 20131733
Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting.Crossref | GoogleScholarGoogle Scholar | 24048155PubMed |

Futuyma DJ, Mayer GC (1980) Non-allopatric speciation in animals. Systematic Zoology 29, 254–271.
Non-allopatric speciation in animals.Crossref | GoogleScholarGoogle Scholar |

Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, Gonzalez CC, Wilf P, Cuneo NR, Johnson KR (2011) Oldest known Eucalyptus macrofossils are from South America. PLoS One 6, e21084
Oldest known Eucalyptus macrofossils are from South America.Crossref | GoogleScholarGoogle Scholar | 21738605PubMed |

Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. The Journal of Experimental Biology 208, 3015–3035.
Phylogenetic approaches in comparative physiology.Crossref | GoogleScholarGoogle Scholar | 16081601PubMed |

Gavrilets S (2003) Models of speciation: what have we learned in 40 years? Evolution 57, 2197–2215.
Models of speciation: what have we learned in 40 years?Crossref | GoogleScholarGoogle Scholar | 14628909PubMed |

Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323, 732–737.
Adaptive radiation: contrasting theory with data.Crossref | GoogleScholarGoogle Scholar | 19197052PubMed |

Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21, 394–407.
Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments.Crossref | GoogleScholarGoogle Scholar |

Ghiselin MT (1974) A radical solution to the species problem. Systematic Zoology 23, 536–544.
A radical solution to the species problem.Crossref | GoogleScholarGoogle Scholar |

Grant V, Grant KA (1965) ‘Flower Pollination in the Phlox Family.’ (Columbia University Press: New York, NY, USA)

Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genetics & Genomes 8, 463–508.
Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus.Crossref | GoogleScholarGoogle Scholar |

Griffin AR (1980) Floral phenology of a stand of mountain ash (Eucalyptus regnans F.Muell.) in Gippsland, Victoria. Australian Journal of Botany 28, 393–404.
Floral phenology of a stand of mountain ash (Eucalyptus regnans F.Muell.) in Gippsland, Victoria.Crossref | GoogleScholarGoogle Scholar |

Griffin AR, Moran GF, Fripp YJ (1987) Preferential Outcrossing in Eucalyptus regnans F.Muell. Australian Journal of Botany 35, 465–475.
Preferential Outcrossing in Eucalyptus regnans F.Muell.Crossref | GoogleScholarGoogle Scholar |

Griffin AR, Hingston AB, Ohmart CP (2009) Pollinators of Eucalyptus regnans (Myrtaceae), the world’s tallest flowering plant species. Australian Journal of Botany 57, 18–25.
Pollinators of Eucalyptus regnans (Myrtaceae), the world’s tallest flowering plant species.Crossref | GoogleScholarGoogle Scholar |

Hager T, Benson D (2010) The eucalypts of the Greater Blue Mountains World Heritage Area: distribution, classification and habitats of the species of Eucalyptus, Angophora and Corymbia (family Myrtaceae) recorded in its eight conservation reserves Cunninghamia 10, 425–444.

Harrison PA, Jones RC, Vaillancourt RE, Wiltshire RJE, Potts BM (2014) Unravelling the evolutionary history of Eucalyptus cordata (Myrtaceae) using molecular markers. Australian Journal of Botany 62, 114–131.
Unravelling the evolutionary history of Eucalyptus cordata (Myrtaceae) using molecular markers.Crossref | GoogleScholarGoogle Scholar |

Hausdorf B (2011) Progress toward a general species concept. Evolution 65, 923–931.
Progress toward a general species concept.Crossref | GoogleScholarGoogle Scholar | 21463293PubMed |

Hendry AP, Nosil P, Rieseberg LH (2007) The speed of ecological speciation. Functional Ecology 21, 455–464.
The speed of ecological speciation.Crossref | GoogleScholarGoogle Scholar | 19096732PubMed |

Hennig W (1966) ‘Phylogenetic Systematics.’ (University of Illinois Press: Urbana, IL, USA)

Hey J (2006) On the failure of modern species concepts. Trends in Ecology & Evolution 21, 447–450.
On the failure of modern species concepts.Crossref | GoogleScholarGoogle Scholar |

Hill KD (2002) Myrtaceae: Eucalyptus. In ‘Flora of New South Wales’, revised edition, Vol. 2. (Ed. GJ Harden) pp. 96–164. (University of New South Wales Press: Sydney, NSW, Australia)

Hingston AB, McQuillan PB (2000) Are pollination syndromes useful predictors of floral visitors in Tasmania? Austral Ecology 25, 600–609.
Are pollination syndromes useful predictors of floral visitors in Tasmania?Crossref | GoogleScholarGoogle Scholar |

Hingston AB, Gartrell BD, Pinchbeck G (2004a) How specialized is the plant-pollinator association between Eucalyptus globulus ssp. globulus and the swift parrot Lathamus discolor? Austral Ecology 29, 624–630.
How specialized is the plant-pollinator association between Eucalyptus globulus ssp. globulus and the swift parrot Lathamus discolor?Crossref | GoogleScholarGoogle Scholar |

Hingston AB, McQuillan PB, Potts BM (2004b) Pollinators in seed orchards of Eucalyptus nitens (Myrtaceae). Australian Journal of Botany 52, 209–222.
Pollinators in seed orchards of Eucalyptus nitens (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Holder M, Lewis PO (2003) Phylogeny estimation: traditional and Bayesian approaches. National Review 4, 275–284.
Phylogeny estimation: traditional and Bayesian approaches.Crossref | GoogleScholarGoogle Scholar |

Hopper SD, Moran GF (1981) Bird pollination and the mating system of Eucalyptus stoatei Australian Journal of Botany 29, 625–638.
Bird pollination and the mating system of Eucalyptus stoateiCrossref | GoogleScholarGoogle Scholar |

Hovenden MJ, Vander Schoor JK (2004) Nature vs nurture in the leaf morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytologist 161, 585–594.
Nature vs nurture in the leaf morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae).Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276, 227–232.
Phylogenetic methods come of age: testing hypotheses in an evolutionary context.Crossref | GoogleScholarGoogle Scholar | 9092465PubMed |

Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29, 25e
Diversity arrays: a solid state technology for sequence information independent genotyping.Crossref | GoogleScholarGoogle Scholar |

Johnson LAS, Blaxell DF (1972) New taxa and combinations in Eucalyptus: I. Contributions from the New South Wales National Herbarium 4, 287

Jones RC, Nicolle D, Steane DA, Vaillancourt RE, Potts BM (2016) High density, genome-wide markers and intra-specific replication yield an unprecedented phylogenetic reconstruction of a globally significant, speciose lineage of Eucalyptus. Molecular Phylogenetics and Evolution 105, 63–85.
High density, genome-wide markers and intra-specific replication yield an unprecedented phylogenetic reconstruction of a globally significant, speciose lineage of Eucalyptus.Crossref | GoogleScholarGoogle Scholar | 27530705PubMed |

Kapralov MV, Votintseva AA, Filatov DA (2013) Molecular adaptation during a rapid adaptive radiation. Molecular Biology and Evolution 30, 1051–1059.
Molecular adaptation during a rapid adaptive radiation.Crossref | GoogleScholarGoogle Scholar | 23355532PubMed |

Kershaw AP (1986) Climatic change and Aboriginal burning in north-east Australia during the last two glacial/interglacial cycles. Letters to Nature 322, 47–49.
Climatic change and Aboriginal burning in north-east Australia during the last two glacial/interglacial cycles.Crossref | GoogleScholarGoogle Scholar |

Klaphake V (2012) ‘Eucalypts of the Sydney Region’, 3rd edn. (Van Klaphake: Byabarra, NSW, Australia)

Kongjandtre N, Ridgway T, Cook LG, Huelsken T, Budd AF, Hoegh-Guldberg O (2012) Taxonomy and species boundaries in the coral genus Favia Milne Edwards and Haime, 1857 (Cnidaria: Scleractinia) from Thailand revealed by morphological and genetic data. Coral Reefs 31, 581–601.
Taxonomy and species boundaries in the coral genus Favia Milne Edwards and Haime, 1857 (Cnidaria: Scleractinia) from Thailand revealed by morphological and genetic data.Crossref | GoogleScholarGoogle Scholar |

Kornet DJ (1993) Permanent splits as speciation events: a formal reconstruction of the internodal species concept. Journal of Theoretical Biology 164, 407–435.
Permanent splits as speciation events: a formal reconstruction of the internodal species concept.Crossref | GoogleScholarGoogle Scholar |

L’Héritier de Brutelle CL (1788) ‘Sertum Anglicum.’ (Didot: Paris, France)

Ladiges PY, Humphries CJ (1983) A cladistic study of Arillastrum, Angophora and Eucalyptus (Myrtaceae). Botanical Journal of the Linnean Society 87, 105–134.
A cladistic study of Arillastrum, Angophora and Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Humphries CJ (1986) Relationships in the stringybarks, Eucalyptus L’Hérit. Informal subgenus Monocalyptus series Capitellatae and Olsenianae: phylogenetic hypotheses, biogeography and classification. Australian Journal of Botany 34, 603–632.
Relationships in the stringybarks, Eucalyptus L’Hérit. Informal subgenus Monocalyptus series Capitellatae and Olsenianae: phylogenetic hypotheses, biogeography and classification.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Humphries CJ, Brooker MIH (1987) Cladistic and biogeographic analysis of Western Australian species of Eucalyptus L’Herit., Informal subgenus Monocalyptus Pryor and Johnson. Australian Journal of Botany 35, 251–281.
Cladistic and biogeographic analysis of Western Australian species of Eucalyptus L’Herit., Informal subgenus Monocalyptus Pryor and Johnson.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Newnham MR, Humphries CJ (1989) Systematics and biogeography of the Australian ‘green ash’ eucalypts (Monocalyptus). Cladistics 5, 345–364.
Systematics and biogeography of the Australian ‘green ash’ eucalypts (Monocalyptus).Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Prober SM, Nelson G (1992) Cladistic and biogeographic analysis of the ‘blue ash’ eucalypts. Cladistics 8, 103–124.
Cladistic and biogeographic analysis of the ‘blue ash’ eucalypts.Crossref | GoogleScholarGoogle Scholar |

Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology 22, 1435–1446.
Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.Crossref | GoogleScholarGoogle Scholar | 19467134PubMed |

Lange RT (1978) Carpological evidence for fossil Eucalyptus and other Leptospermeae (Subfamily Leptospermoideae of Myrtaceae) from a Tertiary deposit in the South Australian Arid Zone. Australian Journal of Botany 26, 221–233.
Carpological evidence for fossil Eucalyptus and other Leptospermeae (Subfamily Leptospermoideae of Myrtaceae) from a Tertiary deposit in the South Australian Arid Zone.Crossref | GoogleScholarGoogle Scholar |

Larcombe MJ, Holland B, Steane DA, Jones RC, Nicolle D, Vaillancourt RE, Potts BM (2015) Patterns of reproductive isolation in Eucalyptus: a phylogenetic perspective. Molecular Biology and Evolution 32, 1833–1846.
Patterns of reproductive isolation in Eucalyptus: a phylogenetic perspective.Crossref | GoogleScholarGoogle Scholar | 25777461PubMed |

Larcombe MJ, Costa e Silva J, Tilyard P, Gore P, Potts BM (2016) On the persistence of reproductive barriers in Eucalyptus: the bridging of mechanical barriers to zygote formation by F1 hybrids is counteracted by intrinsic post-zygotic incompatibilities. Annals of Botany 118, 431–444.
On the persistence of reproductive barriers in Eucalyptus: the bridging of mechanical barriers to zygote formation by F1 hybrids is counteracted by intrinsic post-zygotic incompatibilities.Crossref | GoogleScholarGoogle Scholar | 27401540PubMed |

Lassak EV, Southwell IA (1982) The stem volatile leaf oils of some species of Eucalyptus subseries Strictinae. Phytochemistry 21, 2257–2261.
The stem volatile leaf oils of some species of Eucalyptus subseries Strictinae.Crossref | GoogleScholarGoogle Scholar |

Lewis H (1969) Speciation. Taxon 18, 21–25.
Speciation.Crossref | GoogleScholarGoogle Scholar |

Lexer C, Widmer A (2008) The genic view of plant speciation: recent progress and emerging questions. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3023–3036.
The genic view of plant speciation: recent progress and emerging questions.Crossref | GoogleScholarGoogle Scholar | 18579476PubMed |

Macphail M (2007) Australian Palaeoclimates: Cretaceous to Tertiary: a review of palaeobotanical and related evidence to the year 2000. CRC LEME special volume, open file report 151. CRC LEME, Perth, WA, Australia.

Macphail MK, Thornhill AH (2016) How old are the eucalypts? A review of the microfossil and phylogenetic evidence. Australian Journal of Botany 64, 579–599.
How old are the eucalypts? A review of the microfossil and phylogenetic evidence.Crossref | GoogleScholarGoogle Scholar |

Mallet J (1995) A species definition for the modern synthesis. Trends in Ecology & Evolution 10, 294–299.
A species definition for the modern synthesis.Crossref | GoogleScholarGoogle Scholar |

Mallet J (2005) Hybridization as an invasion of the genome. Trends in Ecology & Evolution 20, 229–237.
Hybridization as an invasion of the genome.Crossref | GoogleScholarGoogle Scholar |

Mallet J (2008) Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 2971–2986.
Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation.Crossref | GoogleScholarGoogle Scholar | 18579473PubMed |

Mardis ER (2008) Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics 9, 387–402.
Next-generation DNA sequencing methods.Crossref | GoogleScholarGoogle Scholar | 18576944PubMed |

Martin HA (1978) Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alcheringa: An Australasian Journal of Palaeontology 2, 181–202.
Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen.Crossref | GoogleScholarGoogle Scholar |

Martin HA (1982) Changing Cenozoic barriers and the Australian paleobotanical record. Annals of the Missouri Botanical Garden 69, 625–667.
Changing Cenozoic barriers and the Australian paleobotanical record.Crossref | GoogleScholarGoogle Scholar |

Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences 1206, 35–55.
Global change and the evolution of phenotypic plasticity in plants.Crossref | GoogleScholarGoogle Scholar | 20860682PubMed |

Mayden RL (1999) Consilience and a hierarchy of species concepts: advances toward closure on the species puzzle. Journal of Nematology 31, 95–116.

Mayr E (1942) ‘Systematics and Origin of Species.’ (Columbia University Press: New York, USA)

Mayr E (1963) ‘Animal Species and Evolution.’ (Harvard University Press: Cambridge, MA, USA)

Mayr E (1982) ‘The Growth of Biological Thought. Diversity, Evolution and Inheritance.’ (Belknap Press of Harvard University Press: Cambridge, MA, USA)

McDade LA (1995) Species concepts and problems in practice: insight from botanical monographs. Systematic Botany 20, 606–622.
Species concepts and problems in practice: insight from botanical monographs.Crossref | GoogleScholarGoogle Scholar |

McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (1999) Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). American Journal of Botany 86, 1038–1046.
Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 10406727PubMed |

McKinnon GE, Jordan GJ, Vaillancourt RE, Potts BM (2004) Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 275–284.
Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts.Crossref | GoogleScholarGoogle Scholar | 15101583PubMed |

McKinnon GE, Potts BM, Steane DA, Vaillancourt RE (2005) Population and phylogenetic analysis of the cinnamoyl coA reductase gene in Eucalyptus globulus (Myrtaceae). Australian Journal of Botany 53, 827–838.
Population and phylogenetic analysis of the cinnamoyl coA reductase gene in Eucalyptus globulus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2008) An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae). American Journal of Botany 95, 368–380.
An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 21632361PubMed |

McKitrick MC, Zink RM (1988) Species concepts in ornithology. The Condor 90, 1–14.
Species concepts in ornithology.Crossref | GoogleScholarGoogle Scholar |

McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M (2014) Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell & Environment 37, 1440–1451.
Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa.Crossref | GoogleScholarGoogle Scholar |

Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O (2017) Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Communications 8, 14363
Ancient hybridization fuels rapid cichlid fish adaptive radiations.Crossref | GoogleScholarGoogle Scholar | 28186104PubMed |

Mills K (2010) ‘Rare Plant Species in the Illawarra 4: Eucalyptus langleyi (Myrtaceae). Illawarra Vegetation Studies (20).’ (Coachwood Publishing: Jamberoo, NSW, Australia)

Milner ML, Weston PH, Rossetto M, Crisp MD (2015) Biogeography of the Gondwanan genus Lomatia (Proteaceae): vicariance at continental and intercontinental scales. Journal of Biogeography 42, 2440–2451.
Biogeography of the Gondwanan genus Lomatia (Proteaceae): vicariance at continental and intercontinental scales.Crossref | GoogleScholarGoogle Scholar |

Moen D, Morlon H (2014) From dinosaurs to modern bird diversity: extending the time scale of adaptive radiation PLoS Biology 12, e1001854
From dinosaurs to modern bird diversity: extending the time scale of adaptive radiationCrossref | GoogleScholarGoogle Scholar | 24802950PubMed |

Morgan CL (1896) On modification and variation. Science 4, 733–740.
On modification and variation.Crossref | GoogleScholarGoogle Scholar | 17735249PubMed |

Murray J, Clarke B (1980) The genus Partula on Moorea: speciation in progress. Proceedings of the Royal Society of London – B. Biological Sciences 211, 83–117.
The genus Partula on Moorea: speciation in progress.Crossref | GoogleScholarGoogle Scholar |

Nevill PG, Després T, Bayly MJ, Bossinger G, Ades PK (2014) Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genetics & Genomes 10, 1079–1092.
Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances.Crossref | GoogleScholarGoogle Scholar |

Nicolle D (2018) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus), version 3. Available at http://www.dn.com.au/Classification-Of-The-Eucalypts.pdf [Verified 18 June 2018]

Nicotra AB, Davidson A (2010) Adaptive phenotypic plasticity and plant water use. Functional Plant Biology 37, 117–127.
Adaptive phenotypic plasticity and plant water use.Crossref | GoogleScholarGoogle Scholar |

Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692.
Plant phenotypic plasticity in a changing climate.Crossref | GoogleScholarGoogle Scholar | 20970368PubMed |

Noor MAF, Feder JL (2006) Speciation genetics: evolving approaches. Nature Reviews. Genetics 7, 851–861.
Speciation genetics: evolving approaches.Crossref | GoogleScholarGoogle Scholar |

Nosil P, Feder JL (2012) Genomic divergence during speciation: causes and consequences. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 367, 332–342.
Genomic divergence during speciation: causes and consequences.Crossref | GoogleScholarGoogle Scholar | 22201163PubMed |

Nosil P, Schluter D (2011) The genes underlying the process of speciation. Trends in Ecology & Evolution 26, 160–167.
The genes underlying the process of speciation.Crossref | GoogleScholarGoogle Scholar |

Ochieng JW, Henry RJ, Baverstock PR, Steane DA, Shepherd M (2007a) Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44, 752–764.
Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs.Crossref | GoogleScholarGoogle Scholar | 17570687PubMed |

Ochieng JW, Steane DA, Ladiges PY, Baverstock PR, Henry RJ, Shepherd M (2007b) Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genetics and Molecular Biology 30, 1125–1134.
Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Office of Environment and Heritage (2019) Threatened species. Available at https://www.environment.nsw.gov.au/topics/animals-and-plants/threatened-species [Verified 14 February 2019]

Orr HA, Masly JP, Presgraves DC (2004) Speciation genes. Current Opinion in Genetics & Development 14, 675–679.
Speciation genes.Crossref | GoogleScholarGoogle Scholar |

Papadopulos AST, Baker WJ, Crayn D, Butlin RK, Kynast RG, Hutton I, Savolainen V (2011) Speciation with gene flow on Lord Howe Island. Proceedings of the National Academy of Sciences of the United States of America 108, 13188–13193.
Speciation with gene flow on Lord Howe Island.Crossref | GoogleScholarGoogle Scholar |

Paterson HEH (1985) The Recognition Concept of Species. In ‘Species and Speciation. Transvaal Museum Monograph No. 4’. (Ed. E Vrba) pp. 21–29. (Transvaal Museum: Pretoria, South Africa)

Paul R (2002) Species concepts versus species criteria. Trends in Parasitology 18, 439–440.
Species concepts versus species criteria.Crossref | GoogleScholarGoogle Scholar | 12377592PubMed |

Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology & Evolution 25, 459–467.
Phenotypic plasticity’s impacts on diversification and speciation.Crossref | GoogleScholarGoogle Scholar |

Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends in Ecology & Evolution 20, 481–486.
Evolution of phenotypic plasticity: where are we going now?Crossref | GoogleScholarGoogle Scholar |

Pole MS, Hill RS, Green N, Macphail MK (1993) The Oligocene Berwick Quarry flora: rainforest in a drying environment. Australian Systematic Botany 6, 399–427.
The Oligocene Berwick Quarry flora: rainforest in a drying environment.Crossref | GoogleScholarGoogle Scholar |

Pollock LJ, Bayly MJ, Nevill PG, Vesk PA (2013) Chloroplast DNA diversity associated with protected slopes and valleys for hybridizing Eucalyptus species on isolated ranges in south-eastern Australia. Journal of Biogeography 40, 155–167.
Chloroplast DNA diversity associated with protected slopes and valleys for hybridizing Eucalyptus species on isolated ranges in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Potts BM, Pederick LA (2000) Morphology, phylogeny, origin, distribution and genetic diversity of eucalypts. In ‘Diseases and Pathogens of Eucalypts’. (Eds PJ Keane, GA Kile, FD Podger, BN Brown) pp. 11–34. (CSIRO Publishing: Melbourne, Vic., Australia)

Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proceedings. Biological Sciences 270, 1433–1440.
The role of phenotypic plasticity in driving genetic evolution.Crossref | GoogleScholarGoogle Scholar | 12965006PubMed |

Prober S, Bell JC, Moran G (1990a) A phylogenetic and allozyme approach to understanding rarity in three ‘green ash’ eucalypts (Myrtaceae). Plant Systematics and Evolution 172, 99–118.
A phylogenetic and allozyme approach to understanding rarity in three ‘green ash’ eucalypts (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Prober SM, Tompkins C, Moran GF, Bell JC (1990b) The conservation genetics of Eucalyptus paliformis L.Johnson et Blaxell and E. parvifolia Cambage, two rare species from south-eastern Australia. Australian Journal of Botany 38, 79–95.
The conservation genetics of Eucalyptus paliformis L.Johnson et Blaxell and E. parvifolia Cambage, two rare species from south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Pryor LD (1959) Species distribution and association in Eucalyptus. In ‘Biogeography and Ecology in Australia. Monographiae Biologicae.’ (Eds A Keast, RL Crocker, CS Christian) pp. 461–471. (Springer: Dordrecht, Netherlands)

Pryor LD (1976) ‘Biology of Eucalypts.’ (Edward Arnold: London, UK)

Pryor LD, Johnson LAS (1971) ‘A Classification of the Eucalypts.’ (The Australian National University: Canberra, ACT, Australia)

Ridley M (1989) The cladistic solution to the species problem. Biology & Philosophy 4, 1–16.
The cladistic solution to the species problem.Crossref | GoogleScholarGoogle Scholar |

Rieseberg LH (1997) Hybrid origins of plant species. Annual Review of Ecology and Systematics 28, 359–389.
Hybrid origins of plant species.Crossref | GoogleScholarGoogle Scholar |

Rieseberg LH, Willis JH (2007) Plant speciation. Science 317, 910–914.
Plant speciation.Crossref | GoogleScholarGoogle Scholar | 17702935PubMed |

Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211–1216.
Major ecological transitions in wild sunflowers facilitated by hybridization.Crossref | GoogleScholarGoogle Scholar | 12907807PubMed |

Ronquist F (1997) Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195–203.
Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography.Crossref | GoogleScholarGoogle Scholar |

Rosen DE (1978) Vicariant patterns and historical explanation in biogeography. Systematic Zoology 27, 159–188.
Vicariant patterns and historical explanation in biogeography.Crossref | GoogleScholarGoogle Scholar |

Rozefelds AC (1996) Eucalyptus phylogeny and history: a brief summary. Tasforests 8, 15–26.

Rundle HD, Nosil P (2005) Ecological speciation. Ecology Letters 8, 336–352.
Ecological speciation.Crossref | GoogleScholarGoogle Scholar |

Rutherford S, Wilson PG, Rossetto M, Bonser SP (2015) Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification. Australian Systematic Botany 28, 326–354.
Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification.Crossref | GoogleScholarGoogle Scholar |

Rutherford S, Bonser SP, Wilson PG, Rossetto M (2017) Seedling response to environmental variability: the relationship between phenotypic plasticity and evolutionary history in closely related Eucalyptus species. American Journal of Botany 104, 840–857.
Seedling response to environmental variability: the relationship between phenotypic plasticity and evolutionary history in closely related Eucalyptus species.Crossref | GoogleScholarGoogle Scholar | 28611071PubMed |

Rutherford S, Rossetto M, Bragg JG, McPherson H, Benson D, Bonser SP, Wilson PG (2018) Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species. Heredity 121, 126–141.
Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species.Crossref | GoogleScholarGoogle Scholar | 29632325PubMed |

Sale MM, Potts BM, West AK, Reid JB (1993) Relationships within Eucalyptus using chloroplast DNA. Australian Systematic Botany 6, 127–138.
Relationships within Eucalyptus using chloroplast DNA.Crossref | GoogleScholarGoogle Scholar |

Sangster G (2014) The application of species criteria in avian taxonomy and its implications for the debate over species concepts. Biological Reviews of the Cambridge Philosophical Society 89, 199–214.
The application of species criteria in avian taxonomy and its implications for the debate over species concepts.Crossref | GoogleScholarGoogle Scholar | 23869749PubMed |

Sato A, Tichy H, O’hUigin C, Grant PR, Grant BR, Klein J (2001) On the origin of Darwin’s finches. Molecular Biology and Evolution 18, 299–311.
On the origin of Darwin’s finches.Crossref | GoogleScholarGoogle Scholar | 11230531PubMed |

Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24, 35–68.
Genetics and evolution of phenotypic plasticity.Crossref | GoogleScholarGoogle Scholar |

Schlichting CD, Levin DA (1986) Phenotypic plasticity: plant character. Biological Journal of the Linnean Society. Linnean Society of London 29, 37–47.
Phenotypic plasticity: plant character.Crossref | GoogleScholarGoogle Scholar |

Schluter D (2000) ‘The Ecology of Adaptive Radiation.’ (Oxford University Press: Oxford, UK)

Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323, 737–741.
Evidence for ecological speciation and its alternative.Crossref | GoogleScholarGoogle Scholar | 19197053PubMed |

Schuster TM, Setaro SD, Tibbits JFG, Batty EL, Fowler RM, McLay TGB, Wilcox S, Ades PK, Bayly MJ (2018) Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PLoS One 13, e0195034
Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 29668710PubMed |

Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel CL, Saetre GP, Bank C, Brännström A, Brelsford A, Clarkson CS, Eroukhmanoff F, Feder JL, Fischer MC, Foote AD, Franchini P, Jiggins CD, Jones FC, Lindholm AK, Lucek K, Maan ME, Marques DA, Martin SH, Matthews B, Meier JI, Möst M, Nachman MW, Nonaka E, Rennison DJ, Schwarzer J, Watson ET, Westram AM, Widmer A (2014) Genomics and the origin of species. National Review 15, 176–192.
Genomics and the origin of species.Crossref | GoogleScholarGoogle Scholar |

Shepherd M, Raymond C (2010) Species differentiation and gene flow in the blackbutts (genus Eucalyptus subgenus Eucalyptus section Pseudophloius). Conservation Genetics 11, 1965–1978.
Species differentiation and gene flow in the blackbutts (genus Eucalyptus subgenus Eucalyptus section Pseudophloius).Crossref | GoogleScholarGoogle Scholar |

Simpson GG (1961) ‘Principles of Animal Taxonomy.’ (Columbia University Press: New York, NY, USA)

Slee AV, Brooker MIH, Duffy SM, West JG (2006) ‘EUCLID: Eucalypts of Australia’, 3rd edn. (CD-ROM) (CSIRO Publishing: Melbourne, Vic., Australia)

Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-Emán J, Burney CW, Xie X, Harvey MG, Faircloth BC, Glenn TC, Derryberry EP, Prejean J, Fields S, Brumfield RT (2014) The drivers of tropical speciation. Nature 515, 406–409.
The drivers of tropical speciation.Crossref | GoogleScholarGoogle Scholar | 25209666PubMed |

Sneath PHA (1976) Phenetic taxonomy at the species level and above. Taxon 25, 437–450.
Phenetic taxonomy at the species level and above.Crossref | GoogleScholarGoogle Scholar |

Sniderman JMK, Pillans B, O’Sullivan PB, Peter Kershaw A (2007) Climate and vegetation in southeastern Australia respond to southern hemisphere insolation forcing in the late Pliocene–early Pleistocene. Geology 35, 41–44.
Climate and vegetation in southeastern Australia respond to southern hemisphere insolation forcing in the late Pliocene–early Pleistocene.Crossref | GoogleScholarGoogle Scholar |

Sobel JM, Chen GF, Watt LR, Schemske DW (2010) The biology of speciation. Evolution 64, 295–315.
The biology of speciation.Crossref | GoogleScholarGoogle Scholar | 19891628PubMed |

Sokal RR, Crovello TJ (1970) The biological species concept: a critical evaluation. American Naturalist 104, 127–153.
The biological species concept: a critical evaluation.Crossref | GoogleScholarGoogle Scholar |

Steane DA, Byrne M, Vaillancourt RE, Potts BM (1998) Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Australian Systematic Botany 11, 25–40.
Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Steane DA, McKinnon GE, Vaillancourt RE, Potts BM (1999) ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
ITS sequence data resolve higher level relationships among the eucalypts.Crossref | GoogleScholarGoogle Scholar | 10381324PubMed |

Steane DA, Nicolle D, McKinnon GE, Vaillancourt RE, Potts BM (2002) Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany 15, 49–62.
Higher-level relationships among the eucalypts are resolved by ITS-sequence data.Crossref | GoogleScholarGoogle Scholar |

Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genetics & Genomes 2, 30–38.
A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits.Crossref | GoogleScholarGoogle Scholar |

Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Molecular Phylogenetics and Evolution 59, 206–224.
Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping.Crossref | GoogleScholarGoogle Scholar | 21310251PubMed |

Templeton AR (1989) The meaning of species and speciation: a genetic perspective. In ‘Speciation and its Consequences’ (Eds D Otte, JA Endler) pp. 3–27. (Sinauer Associates: Sunderland, MA, USA)

Thornhill AH, Macphail M (2012) Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: a review of fossil Myrtaceidites species. Review of Palaeobotany and Palynology 176–177, 1–23.
Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: a review of fossil Myrtaceidites species.Crossref | GoogleScholarGoogle Scholar |

Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93, 29–43.
Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny.Crossref | GoogleScholarGoogle Scholar | 26211451PubMed |

Thornhill AH, Crisp MD, Külheim C, Lam KE, Nelson LA, Yeates DK, Miller JT (2019) A dated molecular perspective of eucalypt taxonomy, evolution, and diversification. Australian Systematic Botany 32, 29–48.
A dated molecular perspective of eucalypt taxonomy, evolution, and diversification.Crossref | GoogleScholarGoogle Scholar |

Udovicic F, McFadden GI, Ladiges PY (1995) Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data. Molecular Phylogenetics and Evolution 4, 247–256.
Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data.Crossref | GoogleScholarGoogle Scholar | 8845962PubMed |

Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25, 233–239.
Ecological species, multispecies, and oaks.Crossref | GoogleScholarGoogle Scholar |

Wade MJ (2002) A gene’s eye view of epistasis, selection and speciation. Journal of Evolutionary Biology 15, 337–346.
A gene’s eye view of epistasis, selection and speciation.Crossref | GoogleScholarGoogle Scholar |

Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the Endangered Species Act. Marine Fisheries Review 53, 11–22.

Wardell-Johnson GW, Williams JE, Hill KD, Cumming R (1997) Evolutionary biogeography and contemporary distribution of eucalypts. In ‘Eucalypt Ecology: Individuals to Ecosystems’. (Eds J Williams, J Woinarski) pp. 92–128. (Cambridge University Press: Cambridge, UK)

West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences of the United States of America 102, 6543–6549.
Developmental plasticity and the origin of species differences.Crossref | GoogleScholarGoogle Scholar | 15851679PubMed |

Wilding CS, Grahame J, Mill PJ (2002) A GTT microsatellite repeat motif and differentiation between morphological forms of Littorina saxatilis: speciation in progress? Marine Ecology Progress Series 227, 195–204.
A GTT microsatellite repeat motif and differentiation between morphological forms of Littorina saxatilis: speciation in progress?Crossref | GoogleScholarGoogle Scholar |

Wiley EO (1978) The evolutionary species concept reconsidered. Systematic Zoology 27, 17–26.
The evolutionary species concept reconsidered.Crossref | GoogleScholarGoogle Scholar |

Wilf P, Escapa IH (2015) Green Web or megabiased clock? Plant fossils from Gondwanan Patagonia speak on evolutionary radiations. New Phytologist 207, 283–290.
Green Web or megabiased clock? Plant fossils from Gondwanan Patagonia speak on evolutionary radiations.Crossref | GoogleScholarGoogle Scholar | 25441060PubMed |

Willyard A, Syring J, Gernandt DS, Liston A, Cronn R (2007) Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution 24, 90–101.
Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus.Crossref | GoogleScholarGoogle Scholar | 16997907PubMed |

Wolf JBW, Lindell J, Backström N (2010) Speciation genetics: current status and evolving approaches. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 365, 1717–1733.
Speciation genetics: current status and evolving approaches.Crossref | GoogleScholarGoogle Scholar |

Woodhams M, Steane DA, Jones RC, Nicolle D, Moulton V, Holland BR (2013) Novel distances for Dollo data. Systematic Biology 62, 62–77.
Novel distances for Dollo data.Crossref | GoogleScholarGoogle Scholar | 22914977PubMed |

Wu C-I (2001) The genic view of the process of speciation. Journal of Evolutionary Biology 14, 851–865.
The genic view of the process of speciation.Crossref | GoogleScholarGoogle Scholar |

Xu L, Harrison RD, Yang P, Yang D-R (2011) New insight into the phylogenetic and biogeographic history of genus Ficus: vicariance played a relatively minor role compared with ecological opportunity and dispersal. Journal of Systematics and Evolution 49, 546–557.
New insight into the phylogenetic and biogeographic history of genus Ficus: vicariance played a relatively minor role compared with ecological opportunity and dispersal.Crossref | GoogleScholarGoogle Scholar |