A dated molecular perspective of eucalypt taxonomy, evolution and diversification
Andrew H. Thornhill A B C H , Michael D. Crisp D , Carsten Külheim D E , Kristy E. Lam A , Leigh A. Nelson F , David K. Yeates F and Joseph T. Miller A GA Centre for Australian National Biodiversity Research, National Research Collections, Black Mountain, CSIRO, Canberra, ACT 2601, Australia.
B Australian Tropical Herbarium, James Cook University, Cairns, Qld 4870, Australia.
C University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, CA 94720-2465, USA.
D Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
E School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
F Australian National Insect Collection and Taxonomic Research and Information Network, National Research Collections, Black Mountain, CSIRO, ACT 2601, Australia.
G Office of International Science and Engineering, National Science Foundation, Alexandria, VA 22314, USA.
H Corresponding author. Email: andrew.thornhill@gmail.com
Australian Systematic Botany 32(1) 29-48 https://doi.org/10.1071/SB18015
Submitted: 25 March 2018 Accepted: 14 February 2019 Published: 9 April 2019
Abstract
The eucalypts, which include Eucalyptus, Angophora and Corymbia, are native to Australia and Malesia and include over 800 named species in a mixture of diverse and depauperate lineages. We assessed the fit of the eucalypt taxonomic classification to a phylogeny of 711 species scored for DNA sequences of plastid matK and psbA–trnH, as well as nuclear internal transcribed spacer and external transcribed spacer. Two broadly similar topologies emerge from both maximum likelihood and Bayesian analyses, showing Angophora nested within Corymbia, or Angophora sister to Corymbia. The position of certain species-poor groups on long branches fluctuated relative to the three major Eucalyptus subgenera, and positions of several closely related species within those subgenera were unstable and lacked statistical support. Most sections and series of Eucalyptus were not recovered as monophyletic. We calibrated these phylogenies against time, using penalised likelihood and constraints obtained from fossil ages. On the basis of these trees, most major eucalypt subgenera arose in the Late Eocene and Early Oligocene. All Eucalyptus clades with taxa occurring in south-eastern Australia have crown ages <20 million years. Several eucalypt clades display a strong present-day geographic disjunction, although these clades did not have strong phylogenetic statistical support. In particular, the estimated age of the separation between the eudesmids (Eucalyptus subgenus Eudesmia) and monocalypts (Eucalyptus subgenus Eucalyptus) was consistent with extensive inland water bodies in the Eocene. Bayesian analysis of macroevolutionary mixture rates of net species diversification accelerated in five sections of Eucalyptus subgenus Symphyomyrtus, all beginning 2–3 million years ago and associated with semi-arid habitats dominated by mallee and mallet growth forms, and with open woodlands and forests in eastern Australia. This is the first time that a calibrated molecular study has shown support for the rapid diversification of eucalypts in the recent past, most likely driven by changing climate and diverse soil geochemical conditions.
Additional keywords: Bayesian analysis of macroevolutionary mixtures (BAMM), eucalypts, molecular dating, Myrtaceae, phylogenetics.
References
Ambrose GJ, Callen R, Flint RB, Lange RT (1979) Eucalyptus fruits in stratigraphic context in Australia. Nature 280, 387–389.| Eucalyptus fruits in stratigraphic context in Australia.Crossref | GoogleScholarGoogle Scholar |
Andrews EC (1913) The development of the natural order Myrtaceae. Proceedings of the Linnean Society of New South Wales 38, 529–568.
| The development of the natural order Myrtaceae.Crossref | GoogleScholarGoogle Scholar |
Bayly MJ (2016) Phylogenetic studies of eucalypts: fossils, morphology, and genomes. Proceedings of the Royal Society of Victoria 128, 12–24.
| Phylogenetic studies of eucalypts: fossils, morphology, and genomes.Crossref | GoogleScholarGoogle Scholar |
Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J (2013) Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Molecular Phylogenetics and Evolution 69, 704–716.
| Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 23876290PubMed |
Berger BA, Kriebel R, Spalink D, Sytsma KJ (2016) Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution 95, 116–136.
| Divergence times, historical biogeography, and shifts in speciation rates of Myrtales.Crossref | GoogleScholarGoogle Scholar | 26585030PubMed |
Biffin E, Craven LA, Crisp MD, Gadek PA (2006) Molecular systematics of Syzygium and allied genera (Myrtaceae): evidence from the chloroplast genome. Taxon 55, 79–94.
| Molecular systematics of Syzygium and allied genera (Myrtaceae): evidence from the chloroplast genome.Crossref | GoogleScholarGoogle Scholar |
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537
| BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |
Brooker MIH (2000) A new classification of the genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13, 79–148.
| A new classification of the genus Eucalyptus L’Hér. (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Bui EN, Thornhill AH, González-Orozco CE, Knerr NJ, Miller JT (2017) Climate and geochemistry as drivers of eucalypt diversification in Australia. Geobiology 15, 427–440.
| Climate and geochemistry as drivers of eucalypt diversification in Australia.Crossref | GoogleScholarGoogle Scholar | 28371135PubMed |
Cavanilles AJ (1797) Icones et Descriptiones Plantarum 4, 21 [tab. 338]
Crisp MD, Cook LG, Steane DA (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 1551–1571.
| Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?Crossref | GoogleScholarGoogle Scholar |
Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DMJS (2011) Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nature Communications 2, 193
| Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary.Crossref | GoogleScholarGoogle Scholar | 21326225PubMed |
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |
Forslund K, Pereira C, Capella-Gutierrez S, Sousa da Silva A, Altenhoff A, Huerta-Cepas J, Muffato M, Patricio M, Vandepoele K, Ebersberger I, Blake J, Fernández Breis J, Boeckmann B, Gabaldón T, Sonnhammer E, Dessimoz C, Lewis S (2018) Gearing up to handle the mosaic nature of life in the quest for orthologs. Bioinformatics 34, 323–329.
| Gearing up to handle the mosaic nature of life in the quest for orthologs.Crossref | GoogleScholarGoogle Scholar |
Gadek PA, Wilson PG, Quinn CJ (1996) Phylogenetic reconstruction in Myrtaceae using matK, with particular reference to the position of Psiloxylon and Heteropyxis. Australian Systematic Botany 9, 283–290.
| Phylogenetic reconstruction in Myrtaceae using matK, with particular reference to the position of Psiloxylon and Heteropyxis.Crossref | GoogleScholarGoogle Scholar |
Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, González CC, Wilf P, Cúneo NR, Johnson KR (2011) Oldest known Eucalyptus macrofossils are from South America. PLoS One 6, e21084
| Oldest known Eucalyptus macrofossils are from South America.Crossref | GoogleScholarGoogle Scholar | 21738605PubMed |
Gibbs AK, Udovicic F, Drinnan AN, Ladiges PY (2009) Phylogeny and classification of Eucalyptus subgenus Eudesmia (Myrtaceae) based on nuclear ribosomal DNA, chloroplast DNA and morphology. Australian Systematic Botany 22, 158–179.
| Phylogeny and classification of Eucalyptus subgenus Eudesmia (Myrtaceae) based on nuclear ribosomal DNA, chloroplast DNA and morphology.Crossref | GoogleScholarGoogle Scholar |
González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr NJ, Laffan SW, Miller JT, Rosauer DF, Faith DP, Nipperess DA, Kujala H, Linke S, Butt N, Külheim C, Crisp MD, Gruber B (2016) Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change 6, 1110–1114.
| Phylogenetic approaches reveal biodiversity threats under climate change.Crossref | GoogleScholarGoogle Scholar |
Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2008) New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3309–3317.
| New Caledonia: a very old Darwinian island?Crossref | GoogleScholarGoogle Scholar | 18765357PubMed |
Hermsen EJ, Gandolfo MA, Zamaloa MDC (2012) The fossil record of Eucalyptus in Patagonia. American Journal of Botany 99, 1356–1374.
| The fossil record of Eucalyptus in Patagonia.Crossref | GoogleScholarGoogle Scholar | 22859652PubMed |
Hill KD, Johnson LAS (1991a) Systematic studies in the eucalypts. 4. New taxa in Eucalyptus (Myrtaceae). Telopea 4, 321–349.
| Systematic studies in the eucalypts. 4. New taxa in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS (1991b) Systematic studies in the eucalypts. 3. New taxa and combinations in Eucalyptus (Myrtaceae). Telopea 4, 223–267.
| Systematic studies in the eucalypts. 3. New taxa and combinations in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS (1992) Systematic studies in the eucalypts. 5. New taxa and combinations in Eucalyptus (Myrtaceae) in Western Australia. Telopea 4, 561–634.
| Systematic studies in the eucalypts. 5. New taxa and combinations in Eucalyptus (Myrtaceae) in Western Australia.Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS (1994) Systematic studies in the eucalypts. 6. A revision of the coolibahs, Eucalyptus subgenus Symphyomyrtus section Adnataria series Oliganthae subseries Microthecosae (Myrtaceae) K.D. Telopea 5, 743–771.
| Systematic studies in the eucalypts. 6. A revision of the coolibahs, Eucalyptus subgenus Symphyomyrtus section Adnataria series Oliganthae subseries Microthecosae (Myrtaceae) K.D.Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS (1995) Systematic studies in the eucalypts 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6, 185–504.
| Systematic studies in the eucalypts 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS (1998) Systematic studies in the eucalypts. 8. A review of the eudesmioid eucalypts, Eucalyptus subgenus Eudesmia (Myrtaceae). Telopea 7, 375–414.
| Systematic studies in the eucalypts. 8. A review of the eudesmioid eucalypts, Eucalyptus subgenus Eudesmia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS (2000) Systematic studies in the eucalypts. 10. New tropical and subtropical eucalypts from Australia and New Guinea (Eucalyptus, Myrtaceae). Telopea 8, 503–539.
| Systematic studies in the eucalypts. 10. New tropical and subtropical eucalypts from Australia and New Guinea (Eucalyptus, Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS, Blaxell DF (2001) Systematic studies in the eucalypts. 11. New taxa and combinations in Eucalyptus section Dumaria (Myrtaceae). Telopea 9, 259–318.
| Systematic studies in the eucalypts. 11. New taxa and combinations in Eucalyptus section Dumaria (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Hill RS (1998) Poor soils and a dry climate: the evolution of the Australian scleromorphic and xeromorphic vegetation. Australian Biologist 11, 26–29.
Hill RS, Truswell EM, McLoughlin S, Dettman ME (1999) The evolution of the Australian flora: fossil evidence. ‘Flora of Australia Volume 1 – Introduction’. (Ed. AE Orchard) pp. 251–320. (CSIRO Publishing: Melbourne, Vic., Australia)
Hill RS, Beer YK, Hill KE, Maciunas EC, Tarran MA, Wainman CC (2016) Evolution of the eucalypts: an interpretation from the macrofossil record. Australian Journal of Botany 64, 600–608.
| Evolution of the eucalypts: an interpretation from the macrofossil record.Crossref | GoogleScholarGoogle Scholar |
Holmes WBK, Holmes FM, Martin HA (1982) Fossil Eucalyptus remains from the Middle Miocene Chalk Mountain Formation, Warrumbungle Mountains, New South Wales. Proceedings of the Linnean Society of New South Wales 106, 299–310.
Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
Johnson LAS (1972) Evolution and classification in Eucalyptus. Proceedings of the Linnean Society of New South Wales 97, 11–29.
Johnson LAS (1976) Problems of species and genera in Eucalyptus (Myrtaceae). Plant Systematics and Evolution 125, 155–167.
| Problems of species and genera in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Johnson LAS, Briggs BG (1983) Myrtaceae. Comments on comments. Taxon 32, 103–105.
| Myrtaceae. Comments on comments.Crossref | GoogleScholarGoogle Scholar |
Johnson LAS, Hill KD (1990) New taxa and combinations in Eucalyptus and Angophora (Myrtaceae). Telopea 4, 37–108.
| New taxa and combinations in Eucalyptus and Angophora (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Johnson LAS, Hill KD (1991) Systematic studies in the eucalypts. 2. A revision of the gimlets and related species: Eucalyptus extracodical series Salubres and Annulatae (Myrtaceae). Telopea 4, 201–222.
| Systematic studies in the eucalypts. 2. A revision of the gimlets and related species: Eucalyptus extracodical series Salubres and Annulatae (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Johnson LAS, Hill KD (1999) Systematic studies in the eucalypts. 9. A review of series Sociales (Eucalyptus subgenus Symphyomyrtus, section Bisectaria, Myrtaceae). Telopea 8, 165–218.
| Systematic studies in the eucalypts. 9. A review of series Sociales (Eucalyptus subgenus Symphyomyrtus, section Bisectaria, Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Jones RC, Nicolle D, Steane DA, Vaillancourt RE, Potts BM (2016) High density, genome-wide markers and intra-specific replication yield an unprecedented phylogenetic reconstruction of a globally significant, speciose lineage of Eucalyptus. Molecular Phylogenetics and Evolution 105, 63–85.
| High density, genome-wide markers and intra-specific replication yield an unprecedented phylogenetic reconstruction of a globally significant, speciose lineage of Eucalyptus.Crossref | GoogleScholarGoogle Scholar | 27530705PubMed |
L’Héritier de Brutelle CL (1789) ‘Sertum Anglicum.’ (Didot: Paris, France)
Ladiges PY (1997) Phylogenetic history and classification of eucalypts. In ‘Eucalypt Ecology: Individuals to Ecosystems’. (Ed. WJRJ Woniarski) pp. 16–29. (Cambridge University Press: Cambridge, MA, USA)
Ladiges PY, Cantrill DJ (2007) New Caledonia–Australian connections: biogeographic patterns and geology. Australian Systematic Botany 20, 383–389.
| New Caledonia–Australian connections: biogeographic patterns and geology.Crossref | GoogleScholarGoogle Scholar |
Ladiges PY, Udovicic F (2000) Comment on a new classification of the eucalypts. Australian Systematic Botany 13, 149–152.
| Comment on a new classification of the eucalypts.Crossref | GoogleScholarGoogle Scholar | http://www.publish.csiro.au/?paper=SB99011
Ladiges PY, Udovicic F, Drinnan AN (1995) Eucalypt phylogeny: molecules and morphology. Australian Systematic Botany 8, 483–497.
| Eucalypt phylogeny: molecules and morphology.Crossref | GoogleScholarGoogle Scholar |
Ladiges PY, Udovicic F, Nelson GY (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30, 989–998.
| Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae.Crossref | GoogleScholarGoogle Scholar |
Ladiges PY, Bayly MJ, Nelson GJ (2010). East–west continental vicariance in Eucalyptus subgenus Eucalyptus. In ‘Beyond Cladistics: the Branching of a Paradigm The Branching of a Paradigm’. (Eds DM Williams, S Knapp) pp. 267–302. (University of California Press: Berkeley, CA, USA) https://doi.org/
Ladiges PY, Parra-O C, Gibbs AK, Udovicic F, Nelson GJ, Bayly MJ (2011) Historical biogeographical patterns in continental Australia: congruence among areas of endemism of two major clades of eucalypts. Cladistics 27, 29–41.
| Historical biogeographical patterns in continental Australia: congruence among areas of endemism of two major clades of eucalypts.Crossref | GoogleScholarGoogle Scholar |
Lange RT (1978) Carpological evidence for fossil Eucalyptus and other Leptospermeae (subfamily Leptospermoideae of Myrtaceae) from a tertiary deposit in the South Australian arid zone. Australian Journal of Botany 26, 221–233.
| Carpological evidence for fossil Eucalyptus and other Leptospermeae (subfamily Leptospermoideae of Myrtaceae) from a tertiary deposit in the South Australian arid zone.Crossref | GoogleScholarGoogle Scholar |
Lucas EJ, Belsham SR, Lughadha EMN, Orlovich DA, Sakuragui CM, Chase MW, Wilson PG (2005) Phylogenetic patterns in the fleshy-fruited Myrtaceae: preliminary molecular evidence. Plant Systematics and Evolution 251, 35–51.
| Phylogenetic patterns in the fleshy-fruited Myrtaceae: preliminary molecular evidence.Crossref | GoogleScholarGoogle Scholar |
Lucas EJ, Harris SA, Mazine FF, Bellsham SR, Lughadha EMN, Telford A, Gasson PE, Chase MW (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56, 1105–1128.
| Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales).Crossref | GoogleScholarGoogle Scholar |
Macphail MK, Thornhill AH (2016) How old are the eucalypts? A review of the microfossil and phylogenetic evidence. Australian Journal of Botany 64, 579–599.
| How old are the eucalypts? A review of the microfossil and phylogenetic evidence.Crossref | GoogleScholarGoogle Scholar |
Macphail MK, Truswell E (1989) Palynostratigraphy of the central west Murray Basin. BMR Journal of Australian Geology and Geophysics 11, 301–331.
Martin H (1991) Tertiary stratigraphic palynology and palaeoclimate of the inland river systems in New South Wales. In ‘The Cainozoic in Australia: a Re-appraisal Evidence’. (Eds M Williams, P De Dekker, A Kershaw) pp. 181–194. (Geological Society of Australia: Sydney, NSW, Australia)
Matzke NJ (2013) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 4, 242–247.
McKain MR, Johnson MG, Uribe‐Convers S, Eaton D, Yang Y (2018) Practical considerations for plant phylogenomics. Applications in Plant Sciences 6, e1038
| Practical considerations for plant phylogenomics.Crossref | GoogleScholarGoogle Scholar | 29732268PubMed |
McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271–300.
| The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism.Crossref | GoogleScholarGoogle Scholar |
McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersema JH, Turland NJ (2012) ‘International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code)’, adopted by the Eighteenth International Botanical Congress, July 2011, Melbourne, Australia. Regnum Vegetabile, vol. 154. (Koeltz Scientific Books: Königstein, Germany)
Nevill PG, Després T, Bayly MJ, Bossinger G, Ades PK (2014) Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genetics & Genomes 10, 1079–1092.
| Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances.Crossref | GoogleScholarGoogle Scholar |
Nicolle D (2015a) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) Version 1. Available at http://www.dn.com.au/Classification-Of-The-Eucalypts-V1-Feb2015.pdf [Verified 24 February 2017]
Nicolle D (2015b) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) Version 2. Available at http://www.dn.com.au/Classification-Of-The-Eucalypts-V2-Apr2015.pdf [Verified 24 February 2017]
Nicolle D (2018) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) Version 3. Available at http://www.dn.com.au/Classification-Of-The-Eucalypts.pdf [Verified 14 September 2018]
Ochieng JW, Henry RJ, Baverstock PR, Steane DA, Shepherd M (2007) Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44, 752–764.
| Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs.Crossref | GoogleScholarGoogle Scholar | 17570687PubMed |
Parra-O C, Bayly MJ, Udovicic F, Ladiges PY (2006) ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae). Taxon 55, 653–663.
| ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Parra-O C, Bayly MJ, Drinnan AN, Udovicic F, Ladiges PY (2009) Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology. Australian Systematic Botany 22, 384–399.
| Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology.Crossref | GoogleScholarGoogle Scholar |
Partridge AD (1999) Late Cretaceous to Tertiary geological evolution of the Gippsland Basin, Victoria. PhD thesis, Latrobe University, Bundoora, Melbourne, Vic., Australia.
Potts BM, Pederick LA (2000) Morphology, phylogeny, origin, distribution and genetic diversity of eucalypts. In ‘Diseases and Pathogens of Eucalypts’. (Eds PJ Keane, GA Kile, FD Podger, BN Brown) pp. 11–34. (CSIRO Publishing: Melbourne, Vic., Australia)
Pryor LD (1976) Geographic distribution of Eucalyptus. In ‘The Biology of Eucalypts’. pp. 1–4. (Edward Arnold: London, UK)
Pryor LD, Johnson LAS (1971) ‘A classification of the eucalypts.’ (Australian National University: Canberra, ACT, Australia)
Pryor LD, Johnson LAS (1981) Eucalyptus, the universal Australian. In ‘Ecological Biogeography of Australia.’ (Ed. A Keast) pp. 501–536. (Dr W Junk Publishers: The Hague, Netherlands)
Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 9, e89543
| Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 24586858PubMed |
Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, Alfaro ME (2013) Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications 4, 1958
| Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.Crossref | GoogleScholarGoogle Scholar | 23739623PubMed |
Rozefelds AC (1996) Eucalyptus phylogeny and history: a brief summary. Tasforests 8, 15–26.
Rutherford S, Wilson PG, Rossetto M, Bonser SP (2015) Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification. Australian Systematic Botany 28, 326–354.
| Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification.Crossref | GoogleScholarGoogle Scholar |
Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302.
| r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Crossref | GoogleScholarGoogle Scholar | 12538260PubMed |
Schuster TM, Setaro SD, Tibbits JFG, Batty EL, Fowler RM, McLay TGB, Wilcox S, Ades PK, Bayly MJ (2018) Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PLoS One 13, e0195034
| Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 29668710PubMed |
Sdrolias M, Muller R, Gaina C (2001) Plate tectonic evolution of eastern Australian marginal ocean basins. In ‘Eastern Australasian Basins Symposium’, 25–28 November 2001, Melbourne, Vic., Australia (Eds K Hill, T Bernecker) pp. 227–237. (Petroleum Exploration Society of Australia: Melbourne, Vic., Australia)
Slee AV, Brooker MIH, Connors JR, Duffy SM (2006) EUCLID eucalypts of southern Australia (third edition) (on CD-ROM) (CSIRO Publishing: Melbourne, Vic., Australia)
Sniderman JMK, Haberle SG (2012) Fire and vegetation change during the Early Pleistocene in southeastern Australia. Journal of Quaternary Science 27, 307–317.
| Fire and vegetation change during the Early Pleistocene in southeastern Australia.Crossref | GoogleScholarGoogle Scholar |
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
| RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |
Steane DA, McKinnon GE, Vaillancourt E, Potts BM, Vaillancourt RE, Potts BM (1999) ITS sequence data resolve higher level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
| ITS sequence data resolve higher level relationships among the eucalypts.Crossref | GoogleScholarGoogle Scholar | 10381324PubMed |
Steane DA, Nicolle D, McKinnon GE, Vaillancourt RE, Potts BM (2002) Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany 15, 49–62.
| Higher-level relationships among the eucalypts are resolved by ITS-sequence data.Crossref | GoogleScholarGoogle Scholar |
Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89, 26–32.
| Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA.Crossref | GoogleScholarGoogle Scholar | 24177765PubMed |
Thornhill AH, Crisp MD (2012) Phylogenetic assessment of pollen characters in Myrtaceae. Australian Systematic Botany 25, 171–187.
| Phylogenetic assessment of pollen characters in Myrtaceae.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Macphail MK (2012) Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: a review of fossil Myrtaceidites species. Review of Palaeobotany and Palynology 176–177, 1–23.
| Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: a review of fossil Myrtaceidites species.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Popple LW, Carter RJ, Ho SYW, Crisp MD (2012a) Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Molecular Phylogenetics and Evolution 63, 15–27.
| Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae.Crossref | GoogleScholarGoogle Scholar | 22197806PubMed |
Thornhill AH, Hope GS, Craven LA, Crisp MD (2012b) Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae. Australian Journal of Botany 60, 165–199.
| Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae.Crossref | GoogleScholarGoogle Scholar |
Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93, 29–43.
| Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny.Crossref | GoogleScholarGoogle Scholar | 26211451PubMed |
Truswell E (1993) Vegetation changes in the Australian Tertiary in response to climatic and phytogeographic forcing factors. Australian Systematic Botany 6, 533–558.
| Vegetation changes in the Australian Tertiary in response to climatic and phytogeographic forcing factors.Crossref | GoogleScholarGoogle Scholar |
Udovicic F, Ladiges PY (2000) Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae). Kew Bulletin 55, 633–645.
| Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |
Udovicic F, McFadden GI, Ladiges PY (1995) Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data. Molecular Phylogenetics and Evolution 4, 247–256.
| Phylogeny of Eucalyptus and Angophora based on 5S rDNA spacer sequence data.Crossref | GoogleScholarGoogle Scholar | 8845962PubMed |
Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
| SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |
Wardell-Johnson GW, Williams JE, Hill KD, Cumming R (1997) Evolutionary biogeography and contemporary distribution of eucalypts. In ‘Eucalypt Ecology: Individuals to Ecosystems’. (Eds J Williams, J Woinarski) pp. 92–128. (Cambridge University Press: Cambridge, UK)
White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR Protocols: a Guide to Methods and Applications’. (Eds MA Innis, DH Gelfand, JJ Sninsky, TJ White) pp. 315–322. (Academic Press: San Diego, CA, USA)
Whittock S, Steane DA, Vaillancourt RE, Potts BMBM (2003) Molecular evidence shows that the tropical boxes (Eucalyptus subgenus Minutifructus) are over-ranked. Transactions of the Royal Society of South Australia 127, 27–32.
Wiens JJ, Lapoint RT, Whiteman NK (2015) Herbivory increases diversification across insect clades. Nature Communications 6,
| Herbivory increases diversification across insect clades.Crossref | GoogleScholarGoogle Scholar | 26399434PubMed |
Wilson PG (2011) Myrtaceae. In ‘The Families and Genera of Vascular Plants. Volume X. Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae’. (Ed K Kubitzki) pp. 212–271. (Springer-Verlag: Heidelberg, Germany)
Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
| Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |
Wright SD, Yong CG, Wichman SR, Dawson JW, Gardner RC (2001) Stepping stones to Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS plus ETS). Journal of Biogeography 28, 769–774.
| Stepping stones to Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS plus ETS).Crossref | GoogleScholarGoogle Scholar |