Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Embryological studies of Magonia pubescens (Dodonaeaeae, Sapindaceae): development of male and female gametophytes in both floral morphs and its phylogenetic implications

Valeria Vanesa González A , Stella Maris Solís B C and María Silvia Ferrucci A B D
+ Author Affiliations
- Author Affiliations

A Instituto de Botánica del Nordeste (IBONE–CONICET), C.C. 209, W3400CBL, Corrientes, Argentina.

B Cátedra de Morfología de Plantas Vasculares, Facultad de Ciencias Agrarias (FCA–UNNE), W3400CBL, Corrientes, Argentina.

C Cátedra de Morfología Vegetal, Facultad de Ciencias Exactas, Naturales y Agrimensura (FACENA–UNNE), W3400CBL, Corrientes, Argentina.

D Corresponding author. Email: msferrucci01@gmail.com

Australian Systematic Botany 30(3) 279-289 https://doi.org/10.1071/SB17021
Submitted: 19 April 2017  Accepted: 7 August 2017   Published: 20 October 2017

Abstract

Magonia pubescens A.St.-Hil. (Dodonaeaeae, Sapindaceae) is a monoecious species exhibiting two floral morphs, namely staminate flowers, with gynoecium reduced to a pistillode, and morphologically hermaphrodite but functionally pistillate flowers. It presents the basic type of antheral wall development. Microsporogenesis is normal, forming tetrahedral and decussate tetrads. Anatomical differences in anthers between floral morphs become visible at the stage of callose wall degradation and release of tetrads. In staminate flowers, the endothecium develops fibrous thickening, and the two middle layers, the tapetum and the parenchymal septum that separates both locule, are degraded. At dehiscence, permanent calymmate tetrads are released. Magonia is the only genus of the family with this type of pollen unit. In pistillate flowers, the endothecium exhibits fibrous thickening only in three to five cells on the dorsal loculus, and only the inner middle layer collapses. The septum that separates both locules remains unaltered, the stomium is non-functional, mature anthers are indehiscent and show collapsed tetrads. In staminate flowers, the gynoecium is reduced to a tricarpellar pistillode, trilocular, with ovules that degenerate after megasporogenesis. In pistillate flowers, the gynoecium has a tricarpellary ovary, with six to eight ovules per carpel; they are campylotropous, bitegmic, mixed crassinucellate, and exhibit a well-developed obturator. The phylogenetic implications of these embryological characters are discussed in the context of the family.

Additional keywords: calymmate tetrads, developed obturator, embryology, monoecious, ovules campylotropous.


References

Acevedo-Rodríguez P (1993) Systematics of Serjania (Sapindaceae). Part 1. A revision of Serjania sect. Platycoccus. Memoirs of the New York Botanical Garden 67, 1–96.

Acevedo-Rodríguez P (2003) Melicocceae (Sapindaceae) Melicoccus and Talisia. In ‘Flora Neotropica Monograph’. Vol. 87, pp. 1–179. (New York Botanical Garden: New York, NY, USA)

Acevedo-Rodríguez P, van Welzen PC, Adema F, van der Ham RWJM (2011) Sapindaceae. In ‘The Families and Genera of Vascular Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae’. (Ed. K Kubitzki) pp 357–407. (Springer-Verlag: Berlin, Germany)

Acevedo-Rodríguez P, Wurdack KJ, Ferrucci MS, Johnson G, Pedro Dias P, Coelho RG, Somner GV, Steinmann VW, Zimmer EA, Strong MT (2017) Generic relationships and classification of tribe Paullinieae (Sapindaceae) with a new concept of supertribe Paulliniodae. Systematic Botany 42, 96–114.
Generic relationships and classification of tribe Paullinieae (Sapindaceae) with a new concept of supertribe Paulliniodae.Crossref | GoogleScholarGoogle Scholar |

Appanah S (1982) Pollination of androdioecious Xerospermum intermedium Radlk. (Sapindaceae) in a rain forest. Botanical Journal of the Linnean Society 18, 11–34.
Pollination of androdioecious Xerospermum intermedium Radlk. (Sapindaceae) in a rain forest.Crossref | GoogleScholarGoogle Scholar |

Banerji I, Chaudhuri KL (1944) A contribution to the life history of Litchi chinensis Sonn. Proceedings of the Indian Academy of Sciences – B. Biological Sciences 11, 19–27.

Barrett SCH (2002) The evolution of plant sexual diversity. Nature Reviews – Genetics 3, 274–284.
The evolution of plant sexual diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFOrtrk%3D&md5=090311bb42fad3f7502215f83ef991b5CAS |

Bawa KS (1977) The reproductive biology of Cupania guatemalensis Radlk. (Sapindaceae). Evolution 31, 52–63.
The reproductive biology of Cupania guatemalensis Radlk. (Sapindaceae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1cnjsF2qsw%3D%3D&md5=76d83aaf1b11518d64333815c98e7da7CAS |

Buerki S, Forest F, Acevedo-Rodríguez P, Callmander MW, Nylander JAA, Harrington M, Sanmartín I, Küpfer P, Alvarez N (2009) Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Molecular Phylogenetics and Evolution 51, 238–258.
Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFemtbo%3D&md5=81a179c6cc6ec508e3a8ed9b6d1386fcCAS |

Buerki S, Lowry PP, Alvarez N, Razafimandimbison SG, Küpfer P, Callmander MW (2010) Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae. Plant Ecology and Evolution 143, 148–159.
Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae.Crossref | GoogleScholarGoogle Scholar |

Buerki S, Porter P, Lowry II, Andriambololonera S, Phillipson PB, Vary L, Callmander MW (2011) How to kill two genera with one tree: clarifying generic circumscriptions in an endemic Malagasy clade. Botanical Journal of the Linnean Society 165, 223–234.
How to kill two genera with one tree: clarifying generic circumscriptions in an endemic Malagasy clade.Crossref | GoogleScholarGoogle Scholar |

Cao LM, Xia NH, Deng YF (2008) Embryology of Handeliodendron bodinieri (Sapindaceae) and its systematic value: development of male and female gametophytes. Plant Systematics and Evolution 274, 17–23.
Embryology of Handeliodendron bodinieri (Sapindaceae) and its systematic value: development of male and female gametophytes.Crossref | GoogleScholarGoogle Scholar |

Corner EJH (1976) ‘The seeds of Dicotyledons, vols. 1, 2.’ (University Press: Cambridge, UK)

Davis GL (1966) ‘Systematic Embryology of the Angiosperms.’ (Wiley: New York, NY, USA)

Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrift 54, 561–564.

Erdtman G (1966) ‘Pollen Morphology and Plant Taxonomy, Angiosperms.’ (Hafner Publishing Company: New York, NY, USA)

Ferrucci MS (1991) Sapindaceae. In ‘Flora del Paraguay’. (Eds RS Spichiger, L Ramella) pp 1–144. (Conservatoire et Jardin botaniques de la Ville de Genève and Missouri Botanical Garden)

Ferrucci MS, Anzótegui ML (1993) El polen de Paullinieae (Sapindaceae). Bonplandia 6, 211–243.

Gonzalez AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres lhotzkyana (Sterculiaceae). Bonplandia 9, 287–294.

González VV, Solís SM, Ferrucci MS (2014) Anatomía reproductiva en flores estaminadas y pistiladas de Allophylus edulis (Sapindaceae). Boletín de la Sociedad Argentina de Botánica 49, 207–216.

Gulati N, Mathur S (1977) Embriology and taxonomy of Filicium decipiens. Phytomorphology 27, 261–266.

Ha CO, Sands VE, Soepadmo E, Jong K (1988) Reproductive patterns of selected understorey trees in the Malaysian rain forest: the sexual species. Botanical Journal of the Linnean Society 97, 295–316.
Reproductive patterns of selected understorey trees in the Malaysian rain forest: the sexual species.Crossref | GoogleScholarGoogle Scholar |

Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA (2005) Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences. Systematic Botany 30, 366–382.
Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Johansen DA (1940) ‘Plant Microtechnique.’ (Mc Graw-Hill Book Co. Inc.: New York, NY, USA)

Joly CA, Felippe GM, Melhem TS (1980) Taxonomic studies in Magonia St.-Hil. (Sapindaceae). Brittonia 32, 380–386.
Taxonomic studies in Magonia St.-Hil. (Sapindaceae).Crossref | GoogleScholarGoogle Scholar |

Luque R, Sousa HC, Graus JE (1996) Métodos de coloracão de Roeser (1972) – modificado – E. Kropp (1972), visando a substituicão do azul de astra por azul de alcião 8GS ou 8GX. Acta Botanica Brasílica 10, 199–212.
Métodos de coloracão de Roeser (1972) – modificado – E. Kropp (1972), visando a substituicão do azul de astra por azul de alcião 8GS ou 8GX.Crossref | GoogleScholarGoogle Scholar |

Mathur S, Gulati N (1980) Embryology and taxonomy of Allophylus alnifolius Radlk. ex Engl. (Sapindaceae). Indian Journal of Botany 3, 103–112.

Mathur S, Gulati N (1981) Embryology of Lepidopetalum jackianum Hiern. Indian Journal of Botany 4, 216–221.

Mathur S, Gulati N (1989) Embryological studies in Allophylus zeylanicus L. Indian Journal of Botany 12, 62–65.

Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends in Ecology & Evolution 6, 320–325.
Cryptic dioecy in flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7hsVersw%3D%3D&md5=e09fd79f38bfeb42e6a34e4cd25c4728CAS |

Muller J, Leenhouts PW (1976) A general survey of pollen types in Sapindaceae in relation to taxonomy. In ‘The Evolutionary Significance of the Exine. Linnean Society Symposium’, 18–20 September 1974, Kew, UK. (Eds IK Ferguson, J Muller) pp. 407–495. (Academic Press: London, UK)

Nair NC, Joseph J (1960) Morphology and embryology of Cardiospermum halicacabum. Journal of the Indian Botanical Society 39, 176–194.

Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143, 1–81.
Glossary of pollen and spore terminology.Crossref | GoogleScholarGoogle Scholar |

Radlkofer LP (1895) Sapindaceae. In ‘Die Natürlichen Pflanzenfamilien’. (Ed. A Engler) pp. 277–366. (Wilhelm Engelmann: Leipzig, Germany)

Radlkofer L (1934) Sapindaceae. In ‘Das Pflanzenreich. Vol. 98’. (Ed. A Engler) pp. 1–1539. (Wilhelm Engelmann: Leipzig, Germany)

Shamrov H (1998) Ovule classification in flowering plants: new approaches and concepts. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 120, 377–407.

Silva HHG, Silva IG, Santos RMG, Filho ER, Elias CN (2004) Atividade larvicida de taninos isolados de Magonia pubescens St. Hil. (Sapindaceae) sobre Aedes aegypti (Diptera, Culicidae). Revista da Sociedade Brasileira de Medicina Tropical 37, 396–399.
Atividade larvicida de taninos isolados de Magonia pubescens St. Hil. (Sapindaceae) sobre Aedes aegypti (Diptera, Culicidae).Crossref | GoogleScholarGoogle Scholar |

Solís SM (2011) Estudios morfo-anatómicos y ontogenéticos en flores de Paullinieae (Sapindaceae) y su significado evolutivo. PhD thesis, Universidad Nacional de Córdoba, Argentina.

Solís SM, Galati BG, Ferrucci MS (2010) Microsporogenesis and microgametogenesis of Cardiospermum grandiflorum and Urvillea chacoensis (Sapindaceae, Paullinieae). Australian Journal of Botany 58, 597–604.
Microsporogenesis and microgametogenesis of Cardiospermum grandiflorum and Urvillea chacoensis (Sapindaceae, Paullinieae).Crossref | GoogleScholarGoogle Scholar |

Vary LB, Sakai AK, Weller SG (2011) Morphological and functional sex expression in the Malagasy endemic Tina striata (Sapindaceae). American Journal of Botany 98, 1040–1048.
Morphological and functional sex expression in the Malagasy endemic Tina striata (Sapindaceae).Crossref | GoogleScholarGoogle Scholar |

Walker JW, Doyle JA (1975) The bases of angiosperm phylogeny: palynology. Annals of the Missouri Botanical Garden 62, 664–723.
The bases of angiosperm phylogeny: palynology.Crossref | GoogleScholarGoogle Scholar |

Weckerle CS, Rutishauser R (2005) Gynoecium, fruit and seed structure of Paullinieae (Sapindaceae). Botanical Journal of the Linnean Society 147, 159–189.
Gynoecium, fruit and seed structure of Paullinieae (Sapindaceae).Crossref | GoogleScholarGoogle Scholar |

Zhou QY, Liu GS (2012) The embryology of Xanthoceras and its phylogenetic implications. Plant Systematics and Evolution 298, 457–468.
The embryology of Xanthoceras and its phylogenetic implications.Crossref | GoogleScholarGoogle Scholar |

Zini LM, Galati GB, Solís SM, Ferrucci MS (2012) Anther structure and pollen development in Melicoccus lepidopetalus (Sapindaceae): an evolutionary approach to dioecy in the family. Flora 207, 712–720.
Anther structure and pollen development in Melicoccus lepidopetalus (Sapindaceae): an evolutionary approach to dioecy in the family.Crossref | GoogleScholarGoogle Scholar |