Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Taxonomic resolution of the Tetratheca hirsuta (Elaeocarpaceae) species complex using an integrative approach

E. M. Joyce A D , R. Butcher A B , M. Byrne A C , P. F. Grierson A , M. Hankinson C and K. R. Thiele A
+ Author Affiliations
- Author Affiliations

A School of Plant Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Western Australian Herbarium, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

C Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

D Corresponding author. Email: lizzymjoyce@gmail.com

Australian Systematic Botany 30(1) 1-25 https://doi.org/10.1071/SB16040
Submitted: 10 October 2016  Accepted: 9 November 2016   Published: 31 May 2017

Abstract

The Tetratheca hirsuta Lindl. species complex from south-west Western Australia is one of the last unresolved complexes in this Australian endemic genus, and comprises the highly variable T. hirsuta, two rare, phrase-named taxa, and the closely allied T. hispidissima Steetz. An integrative approach, incorporating multivariate morphometric analysis and molecular phylogenetic and phenetic analyses of nrDNA (ETS) and cpDNA (ndhF–trnL, rpl16, trnS–trnG5ʹ2S), was used to investigate taxonomic boundaries within the complex. Morphological data showed clear divergence within the complex, and allowed several taxonomically uncertain individuals to be assigned. Phenetic and phylogenetic analyses of ETS showed substantial congruence with morphology, indicating that the groups recognised through morphometric analyses are also genetically divergent. By comparison, the chloroplast regions yielded incongruent gene trees, perhaps owing to incomplete lineage sorting, hybridisation or slow evolution of cpDNA. The present results support the recognition of the following four taxa: a morphologically and geographically expanded T. hispidissima, which is highly divergent from the remainder of the complex, and a closer grouping of T. hirsuta subsp. boonanarring Joyce & R.Butcher subsp. nov., T. hirsuta subsp. viminea (Lindl.) Joyce comb. et stat. nov. and T. hirsuta subsp. hirsuta.


References

Abeli T, Gentili R, Mondoni A, Orsenigo S, Rossi G (2014) Effects of marginality on plant population performance. Journal of Biogeography 41, 239–249.
Effects of marginality on plant population performance.Crossref | GoogleScholarGoogle Scholar |

Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution 20, 255–266.
Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVOiuro%3D&md5=fa371d5824125af748937fb9164dc984CAS |

Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525.
Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology.Crossref | GoogleScholarGoogle Scholar |

Anderson MJ, Gorley RN, Clarke KR (2008) ‘PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods.’ (PRIMER-E: Plymouth, UK)

Beard JS (1965) ‘Descriptive Catalogue of West Australian Plants.’ (Society for Growing Australian Plants: Picnic Point, NSW, Australia)

Bentham G (1863) ‘Flora Australiensis, Vol. 1.’ (Reeve and Co.: London)

Blackall WE, Grieve BJ (1954) ‘How to Know Western Australian Wildflowers: a Key to the Flora of the Temperate Regions of Western Australia, Vol. 1.’ (University of Western Australia Press: Perth, WA, Australia)

Byrne M, Hankinson M (2012) Testing the variability of chloroplast sequences for plant phylogeography. Australian Journal of Botany 60, 569–574.
Testing the variability of chloroplast sequences for plant phylogeography.Crossref | GoogleScholarGoogle Scholar |

Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar |

Chen CY, Liang BK, Chung JD, Chang CT, Hsieh YC, Lin TC, Hwang SY (2014) Demography of the upward-shifting temperate woody species of the Rhododendron pseudochrysanthum complex and ecologically relevant adaptive divergence in its trailing edge populations. Tree Genetics & Genomes 10, 111–126.
Demography of the upward-shifting temperate woody species of the Rhododendron pseudochrysanthum complex and ecologically relevant adaptive divergence in its trailing edge populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvVKktbg%3D&md5=f83f51107b5e6015867ddc52372700eaCAS |

Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. American Journal of Botany 89, 707–725.
Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVymtA%3D%3D&md5=8310a841af179fb166fbc7cccc52581aCAS |

Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K (2003) Comparing bootstrap and posterior probability values in the four-taxon case. Systematic Biology 52, 477–487.
Comparing bootstrap and posterior probability values in the four-taxon case.Crossref | GoogleScholarGoogle Scholar |

de Lange P, Smissen R, Wagstaff S, Keeling D, Murray B, Toelken H (2010) A molecular phylogeny and infrageneric classification for Kunzea (Myrtaceae) inferred from rDNA ITS and ETS sequences. Australian Systematic Botany 23, 309–319.
A molecular phylogeny and infrageneric classification for Kunzea (Myrtaceae) inferred from rDNA ITS and ETS sequences.Crossref | GoogleScholarGoogle Scholar |

De Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar |

Diels FLE, Pritzel E (1904) Fragmenta Phytographiae Australiae occidentalis. Beitrage zur Kenntnis der Pflanzen Westaustraliens, ihrer Verbreitung und ihrer Lebensverhaltnisse. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie 35, 330

Downing TL (2005) Phylogenetic systematics of Tetratheca (Tremandraceae) and related genera. MSc thesis, School of Botany, University of Melbourne, Vic., Australia.

Downing TL, Ladiges PY, Duretto M (2008) Trichome morphology provides phylogenetically informative characters for Tremandra, Platytheca and Tetratheca (former Tremandraceae). Plant Systematics and Evolution 271, 199–221.
Trichome morphology provides phylogenetically informative characters for Tremandra, Platytheca and Tetratheca (former Tremandraceae).Crossref | GoogleScholarGoogle Scholar |

Erixon P, Svennblad B, Britton T, Oxelman B (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52, 665–673.
Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376.
Evolutionary trees from DNA sequences: a maximum likelihood approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXls1Cisr8%3D&md5=98b9cc830068d7aae8ab943ff7ac16b1CAS |

Gardner CA (1930). ‘Enumeratio plantarum Australiae occidentalis: a Systematic Census of the Plants Occurring in Western Australia.’ (Government Printer: Perth, WA, Australia)

Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27, 857–871.
A general coefficient of similarity and some of its properties.Crossref | GoogleScholarGoogle Scholar |

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=f90d6ac487194036c6364a42893b3990CAS |

Hardig TM, Soltis PS, Soltis DE (2000) Diversification of the North American shrub genus Ceanothus (Rhamnaceae): conflicting phylogenies from nuclear ribosomal DNA and chloroplast DNA. American Journal of Botany 87, 108–123.
Diversification of the North American shrub genus Ceanothus (Rhamnaceae): conflicting phylogenies from nuclear ribosomal DNA and chloroplast DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpslSqug%3D%3D&md5=2299f5103f1b18c189c240cf6a3847fdCAS |

Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35, 623–650.
The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Jones A (2015) ‘Threatened and Priority Flora list for Western Australia.’ (Department of Parks and Wildlife: Perth, WA, Australia)

Jordan WC, Courtney MW, Neigel JE (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). American Journal of Botany 83, 430–439.
Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVWltLo%3D&md5=bfe4f591cbcdd05078b51e216ec1f8b0CAS |

Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. American Naturalist 150, 1–23.
Evolution of a species’ range.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnit1Omtg%3D%3D&md5=296a98ffed58d2a15c44e671f278d669CAS |

Levin DA (1993) Local speciation in plants: the rule not the exception. Systematic Botany 18, 197–208.
Local speciation in plants: the rule not the exception.Crossref | GoogleScholarGoogle Scholar |

Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution in plants. American Journal of Botany 91, 1700–1708.
Reconstructing patterns of reticulate evolution in plants.Crossref | GoogleScholarGoogle Scholar |

Lindley J (1840) A sketch of the vegetation of the Swan River colony. In ‘Appendix to the First Twenty-Three Volumes of Edwards’s Botanical Register’. p. 38. (James Ridgway: Piccadilly, UK)

McPherson H (2008) Phylogenetics and evolutionary dynamics of Tetratheca (Elaeocarpaceae). PhD thesis, University of New South Wales, Sydney, NSW, Australia.

Müller K (2005) SeqState. Applied Bioinformatics 4, 65–69.
SeqState.Crossref | GoogleScholarGoogle Scholar |

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=d10da063024727a1479e6aa316fb7837CAS |

Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Molecular Biology and Evolution 5, 568–583.

Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37, 637–669.
Ecological and evolutionary responses to recent climate change.Crossref | GoogleScholarGoogle Scholar |

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=6229b357700fa1b027ce69204bd44c74CAS |

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=3dbc2d5e642526e674c8ecd165e5af8dCAS |

Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55, 421–438.
Integrative taxonomy: a multisource approach to exploring biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVShtQ%3D%3D&md5=544ed54255378ffdc42489e0ee8a8fc1CAS |

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92, 142–166.
The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Klsbc%3D&md5=92e13057054b00f2f11658f12b17c693CAS |

Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94, 275–288.
Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOjsLg%3D&md5=7cea994970beb3d2d51c41f43afae464CAS |

Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Gaps as characters in sequence-based phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zntlKjtg%3D%3D&md5=9b5d1023152275f066ab5c41a8a8d66eCAS |

Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany 17, 145–170.
Use of nuclear genes for phylogeny reconstruction in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOrsLw%3D&md5=db2ef4c00cdc7fd812c58ac23fe835cdCAS |

Stamatakis A (2014) ‘The RAxML v8.0.X Manual.’ (Heidelberg Institute for Theoretical Studies: Heidelberg, Germany)

Steetz J (1845Tremandrae. In ‘Plantae Preissianae, Vol. 1’. (Ed. JGC Lehmann) p. 216. (Meissner: Hamburg, Germany))

Steetz J (1848) Tremandrae. In ‘Plantae Preissianae, Vol. 2’. (Ed. JGC Lehmann) p. 233. (Meissner: Hamburg, Germany)

Swofford D (2003) PAUP*: phylogenetic analysis using parsimony, version 4.0 b10. (Sinauer Associates: Sunderland, MA, USA)

Thompson J (1976) A revision of the genus Tetratheca (Tremandraceae). Telopea 1, 139–215.
A revision of the genus Tetratheca (Tremandraceae).Crossref | GoogleScholarGoogle Scholar |

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=2875e4585913d87e4f1b0cd802ea0d4bCAS |

Watts CD, Fisher AE, Shrum CD, Newbold WL, Hansen S, Liu C, Kelchner SA (2008) The D4 set: primers that target highly variable intron loops in plant chloroplast genomes. Molecular Ecology Resources 8, 1344–1347.
The D4 set: primers that target highly variable intron loops in plant chloroplast genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2ksL7P&md5=fb293c8e936ba8ec56c7537c3c234c2eCAS |

Wege JA, Thiele KR, Shepherd KA, Butcher R, Macfarlane TD, Coates DJ (2015) Strategic taxonomy in a biodiverse landscape: a novel approach to maximizing conservation outcomes for rare and poorly known flora. Biodiversity and Conservation 24, 17–32.
Strategic taxonomy in a biodiverse landscape: a novel approach to maximizing conservation outcomes for rare and poorly known flora.Crossref | GoogleScholarGoogle Scholar |

Wichman SR, Wright SD, Cameron EK, Keeling DJ, Gardner RC (2002) Elevated genetic heterogeneity and Pleistocene climatic instability: inferences from nrDNA in New Zealand Coprosma (Rubiaceae). Journal of Biogeography 29, 943–954.
Elevated genetic heterogeneity and Pleistocene climatic instability: inferences from nrDNA in New Zealand Coprosma (Rubiaceae).Crossref | GoogleScholarGoogle Scholar |

Yeates DK, Seago A, Nelson L, Cameron SL, Joseph L, Trueman JW (2011) Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36, 209–217.
Integrative taxonomy, or iterative taxonomy?Crossref | GoogleScholarGoogle Scholar |