Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

A five-marker molecular phylogeny of the Styphelieae (Epacridoideae, Ericaceae) supports a broad concept of Styphelia

Caroline Puente-Lelièvre A F , Michael Hislop B , Mark Harrington A , Elizabeth A. Brown C , Maria Kuzmina D and Darren M. Crayn E
+ Author Affiliations
- Author Affiliations

A Australian Tropical Herbarium, James Cook University, Cairns Campus, 14–88 McGregor Road, Smithfield, Qld 4878, Australia.

B Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

C Deceased. Formerly at National Herbarium of New South Wales, Royal Botanic Gardens Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia.

D Canadian Centre for DNA Barcoding, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.

E Centre for Tropical Biodiversity and Climate Change, James Cook University, Qld 4811, Australia.

F Corresponding author. Email: puentec@si.edu

Australian Systematic Botany 28(6) 368-387 https://doi.org/10.1071/SB14041
Submitted: 22 October 2014  Accepted: 8 March 2016   Published: 10 May 2016

Abstract

The Styphelieae is the largest of the seven tribes within the subfamily Epacridoideae Arn. (Ericaceae Juss.). Recent molecular phylogenetic work has resulted in the recircumscription of some genera and the erection of new ones, but several non-monophyletic genera remain. Most of them are concentrated in the well-supported Styphelia–Astroloma clade, which contains species currently assigned to Leucopogon R.Br., Styphelia Sm., Astroloma R.Br., Croninia J.M. Powell and Coleanthera Stschegl. Parsimony and Bayesian analyses of sequence data from four plastid markers (rbcL, matK, trnH–psbA, and atpB–rbcL), and the nuclear ribosomal internal transcribed spacer (ITS) for 207 taxa corroborate the polyphyly of the genera Astroloma, Leucopogon and Styphelia and resolve 12 well supported groups. Of these groups, two can be distinguished by unique morphological features and another six by different character combinations. The remaining groups are morphologically heterogeneous and inconsistent, and not readily distinguishable. A number of species remain ungrouped either because their phylogenetic relationships are not clear or because they do not show strong morphological affinities with the group to which they have a close phylogenetic relationship. Translating the results into a phylogenetic classification is a choice between accepting a single, large genus or at least 12 smaller genera. The first option would result in a heterogeneous assemblage conveying limited morphological information. The multi-generic option would be a better reflection of the morphological diversity of the clade, but would result in many genera lacking readily observable, diagnostic morphological characters. We prioritise the nomenclatural stability inherent in the former approach and advocate expanding Styphelia to include all taxa in the Styphelia–Astroloma clade.

Additional keywords: Astroloma, Australian Ericaceae, Leucopogon, taxonomy.


References

Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Albrecht DE, Owens CT, Weiller CM, Quinn CJ (2010) Generic concepts in Ericaceae: Styphelioideae – the Monotoca group. Australian Systematic Botany 23, 320–332.
Generic concepts in Ericaceae: Styphelioideae – the Monotoca group.Crossref | GoogleScholarGoogle Scholar |

Bartling FG (1830) Epacrideae. In ‘Ordines naturales plantarum eorumque characteres et affinitates adjecta generum enumeratione’ 157–158. (Sumtibus Dieterichianis: Gottingen, Germany)

Bentham G (1869) Epacrideae. In ‘Flora Australiensis. Vol. 4’. pp. 142–265. (Reeve: London)

Brown R (1810) Epacrideae. In ‘Prodromus florae Novae Hollandiae et Insulae Van Diemen. Vol. 1’. pp. 162–171. (Johnson: London)

Crayn DM, Quinn CJ (2000) The evolution of the atpβ–rbcL intergenic spacer in the epacrids (Ericales) and its systematic and evolutionary implications. Molecular Phylogenetics and Evolution 16, 238–252.
The evolution of the atpβ–rbcL intergenic spacer in the epacrids (Ericales) and its systematic and evolutionary implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1antLc%3D&md5=96aceb8f9e8bb110026924c95e90334eCAS | 10942610PubMed |

Crayn DM, Kron KA, Gadek PA, Quinn CJ (1996) Delimitation of Epacridaceae: preliminary molecular evidence. Annals of Botany 77, 317–322.
Delimitation of Epacridaceae: preliminary molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Crayn DM, Kron KA, Gadek PA, Quinn CJ (1998) Phylogenetics and evolution of epacrids: a molecular analysis using the plastid gene rbcL with a reappraisal of the position of Lebetanthus. Australian Journal of Botany 46, 187–200.
Phylogenetics and evolution of epacrids: a molecular analysis using the plastid gene rbcL with a reappraisal of the position of Lebetanthus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksV2qurY%3D&md5=7f66c37b7fae62c5da20dacd7e10ad05CAS |

Crayn DM, Brown EA, Powell JM (2003) A revision of Lissanthe (Styphelioideae: Ericaceae). Australian Systematic Botany 16, 595–619.
A revision of Lissanthe (Styphelioideae: Ericaceae).Crossref | GoogleScholarGoogle Scholar |

Crayn DM, Hislop M, Heslewood MM (2005) Additions to Lissanthe (Styphelioideae: Ericaceae) in Western Australia: L. synandra sp. nov. and L. pleurandroides comb. nov. Australian Systematic Botany 18, 555–561.
Additions to Lissanthe (Styphelioideae: Ericaceae) in Western Australia: L. synandra sp. nov. and L. pleurandroides comb. nov.Crossref | GoogleScholarGoogle Scholar |

Crayn DM, Kron KA, Potter BCM (2014) Typification of some names in Styphelioideae (Ericaceae). Telopea 17, 319–321.
Typification of some names in Styphelioideae (Ericaceae).Crossref | GoogleScholarGoogle Scholar |

de Candolle AP (1839) Epacrideae. In ‘Prodromus systematis naturalis regni vegetabilis. Vol. 7(2)’. pp. 734–771. (Treuttel and Wurtz: Paris)

Drude O (1897) Epacridaceae. In ‘Die Naturlichen Pflanzenfamilien. Vol. 4’. (Eds A Engler, K Prantl) pp. 66–79. (Engelmann: Leipzig, Germany)

Hislop M, Chapman AR (2007) Three new and geographically restricted species of Leucopogon (Ericaceae: Styphelioideae: Styphelieae) from south-west Western Australia. Nuytsia 17, 165–184.

Hislop M, Wilson AJG, Puente-Lelievre C (2013) Four new species of Astroloma (Ericaceae: Styphelioideae: Styphelieae) from Western Australia. Nuytsia 23, 23–42.

Hislop M (2013) A taxonomic update of Conostephium (Ericaceae: Styphelioideae: Styphelieae). Nuytsia 23, 313–335.

Johnson KA, Holland BR, Heslewood MM, Crayn DM (2012) Supermatrices, supertrees and serendipitous scaffolding: inferring a well-resolved, genus-level phylogeny of Styphelioideae (Ericaceae) despite missing data. Molecular Phylogenetics and Evolution 62, 146–158.
Supermatrices, supertrees and serendipitous scaffolding: inferring a well-resolved, genus-level phylogeny of Styphelioideae (Ericaceae) despite missing data.Crossref | GoogleScholarGoogle Scholar | 21967784PubMed |

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=4238d11c94502d8eb467f976d1dafc4dCAS | 12136088PubMed |

Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH–psbA spacer region. PLoS One 2, e508
A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH–psbA spacer region.Crossref | GoogleScholarGoogle Scholar | 17551588PubMed |

Kron KA, Judd W, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. Botanical Review 68, 335–423.
Phylogenetic classification of Ericaceae: molecular and morphological evidence.Crossref | GoogleScholarGoogle Scholar |

Levin RA, Wagner WL, Hoch PC, Nepokroeff M, Pires JC, Zimmer EA, Sytsma KJ (2003) Family-level relationships of Onagraceae based on plastid rbcL and ndhF data. American Journal of Botany 90, 107–115.
Family-level relationships of Onagraceae based on plastid rbcL and ndhF data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Sks7w%3D&md5=97c389e9b0e1d8b06a84aba65262aa22CAS | 21659085PubMed |

Mueller F (1867) ‘Fragmenta phytographiae Australiae. Vol. 6.’ (Government Printer: Melbourne)

Mueller F (1889) ‘Second Systematic Census of Australian Plants. Part 1. Vasculares.’ (McCarron Bird: Melbourne)

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=2efac68a97fac89b3e754d9d42544d59CAS | 18397919PubMed |

Powell JM (1992) Epacridaceae. In ‘Flora of New South Wales. Vol. 3’. (Ed. GJ Harden) pp. 401–434. (New South Wales University Press: Sydney).

Powell JM (1993) Croninia kingiana (Epacridaceae), a change in status for Leucopogon kingianus. Nuytsia 9, 123–130.

Powell JM, Crayn DM, Gadek PA, Quinn CJ, Morrison DA, Chapman AR (1996) A re-assessment of relationships within Epacridaceae. Annals of Botany 77, 305–316.
A re-assessment of relationships within Epacridaceae.Crossref | GoogleScholarGoogle Scholar |

Powell JM, Morrison DA, Gadek PA, Crayn DM, Quinn CJ (1997) Relationships and generic concepts within Styphelieae (Epacridaceae). Australian Systematic Botany 10, 15–29.
Relationships and generic concepts within Styphelieae (Epacridaceae).Crossref | GoogleScholarGoogle Scholar |

Puente-Lelièvre C (2013). Systematics and biogeography of Styphelieae (Epacridoideae, Ericaceae). PhD thesis, James Cook University, Cairns, Australia.

Quinn CJ, Crayn DM, Heslewood MM, Brown EA, Gadek PA (2003) A molecular estimate of the phylogeny of Styphelieae (Ericaceae). Australian Systematic Botany 16, 581–594.
A molecular estimate of the phylogeny of Styphelieae (Ericaceae).Crossref | GoogleScholarGoogle Scholar |

Quinn CJ, Brown EA, Heslewood MM, Crayn DM (2005) Generic concepts in Styphelieae (Ericaceae): the Cyathodes group. Australian Systematic Botany 18, 439–454.
Generic concepts in Styphelieae (Ericaceae): the Cyathodes group.Crossref | GoogleScholarGoogle Scholar |

Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Sang T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paenoiaceae). American Journal of Botany 84, 1120–1136.
Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paenoiaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFejuro%3D&md5=bd303474ed8334b0c554d311b8b590d6CAS | 21708667PubMed |

Sleumer H (1964) Epacridaceae. In ‘Flora Malesiana. Series 1’. pp. 422–444. (Wolters-Noordhoff: Groningen, Netherlands)

Sonder OW (1845) Epacrideae. In ‘Plantae Preissianae. Vol. 1’. (Ed. JGC Lehmann) pp. 296–336. (Meissneri: Hamburg, Germany)

Sprengel C (1825) ‘Systema vegetabilium. Vol. 1.’ (Sumtibus Librariae Dieterichianae: Gottingen, Germany)

Streiber N (1999) Revision of the genus Astroloma (Epacridaceae). BSc(Hons) thesis, University of New South Wales, Sydney.

Swofford DL (2002) ‘PAUP*: phylogenetic analysis using parsimony (*and other methods) v. 4.0b10.’ (Sinauer: Sunderland, MA)

Taaffe G, Brown EA, Crayn DM, Gadek PA (2001) Generic concepts in Styphelieae: resolving the limits of Leucopogon. Australian Journal of Botany 49, 107–120.
Generic concepts in Styphelieae: resolving the limits of Leucopogon.Crossref | GoogleScholarGoogle Scholar |

Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28, 723–737.

Virot R (1975) Epacridaceés. In ‘Flore de la Nouvelle-Caledonie et dependances’. (Eds A Aubreville, J-F Leroy) pp. 106–160. (Museum National d’Histoire Naturelle: Paris)

Weiller C (1996) Planocarpa (Epacridaceae), a new generic name. Australian Systematic Botany 9, 509–519.
Planocarpa (Epacridaceae), a new generic name.Crossref | GoogleScholarGoogle Scholar |

Weiller CM (1999) Leptecophylla, a new genus for species formerly included in Cyathodes (Epacridaceae). Muelleria 12, 195–214.

White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR Protocols: a Guide to Methods and Applications’. (Eds M Innis, D Gelfand, J Sninsky, T White) pp. 315–322. (Academic Press: San Diego, CA)