Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

A revision of Olearia section Asterotriche (Asteraceae: Asterae)

Andre Messina A C , Neville G. Walsh B , Susan E. Hoebee A and Peter T. Green A
+ Author Affiliations
- Author Affiliations

A Department of Botany, La Trobe University, Bundoora, Vic. 3083, Australia.

B National Herbarium of Victoria, South Yarra, Vic. 3141, Australia.

C Corresponding author. Email: a.messina@latrobe.edu.au

Australian Systematic Botany 27(3) 199-240 https://doi.org/10.1071/SB14012
Submitted: 2 April 2014  Accepted: 4 September 2014   Published: 9 December 2014

Abstract

Recent molecular work on Olearia s.l. has not supported current generic or sectional concepts, instead identifying two major lineages loosely based on distribution. Further work is required to adequately circumscribe Olearia s.s. The present study aimed to determine the monophyly of Australian stellate-haired species of Olearia. Using four molecular regions (ITS, psbA–trnH, rpl32–trnL and matK) sequenced from 27 species, Australian stellate-haired taxa were confirmed as monophyletic. Accordingly, Olearia section Asterotriche is redefined here to include only Australian species. This section is one of the few confirmed natural groups in Olearia. Section Asterotriche is closely associated with, but does not include, the type species of Olearia, O. tomentosa (J.C.Wendl.) DC. Given this close association to the type, section Asterotriche should be retained within Olearia, pending further research that would justify any future changes. This manuscript concludes with a monograph of section Asterotriche, in it six new subspecies are described and nine taxa are lectotypified.


References

Archer W (1861) On the value of hairs, as a character in determining the limits of subordinate groups of species, considered in connection with the genera Eurybia and Olearia of Compositae Journal of the Proceedings of the Linnean Society. Botany 5, 17–21.

Baldwin B, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of the 18S–26S rDNA: congruence of the ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10, 449–463.
Phylogenetic utility of the external transcribed spacer (ETS) of the 18S–26S rDNA: congruence of the ETS and ITS trees of Calycadenia (Compositae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlKmtb4%3D&md5=d10200f5c6b9044aeea530fba5bb3d99CAS | 10051397PubMed |

Bayer R, Cross E (2003) A reassessment of tribal affinities of Cratystylis and Haegiela (Asteraceae) based on three chloroplast DNA sequences. Plant Systematics and Evolution 236, 207–220.
A reassessment of tribal affinities of Cratystylis and Haegiela (Asteraceae) based on three chloroplast DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht12isbY%3D&md5=3b8c0ae328a670b5d08b2f8df090a166CAS |

Bayly MJ, Kellow AV (2006) ‘An illustrated guide to the New Zealand Hebes.’ (Te Papa Press: Wellington, New Zealand)

Beentje H (2010) ‘The Kew plant glossary.’ (Kew Publishing: London)

Bentham G (1867) ‘Flora Australiensis. Vol. 3.’ (L. Reeve & Co.: London)

Bentham G (1873) Notes on the classification, history, and geographical distribution of Compositae. Journal of the Linnean Society of London. Botany 13, 335–577.

Beuzenberg E, Hair J (1984) Contributions to a chromosome atlas of the New Zealand flora-27 Compositae. New Zealand Journal of Botany 22, 353–356.
Contributions to a chromosome atlas of the New Zealand flora-27 Compositae.Crossref | GoogleScholarGoogle Scholar |

Bonifacino JM, Funk VA (2012) Phylogenetics of the Chiliotrichum group (Compositae: Astereae): the story of the fascinating radiation in the paleate Astereae genera from southern South America. Taxon 61, 180–196.

Briggs JD, Leigh JH (1988) ‘Rare or threatened Australian plants.’ Revised edition. Special Publication 14. (Australian National Parks and Wildlife Service: Canberra)

Brouillet L, Lowrey T, Urbatsch L, Karaman-Castro V, Sancho G, Wagstaff SJ, Semple J (2009) Astereae. In ‘Systematics, evolution, and biogeography of Compositae’. (Eds V Funk, A Susanna, T Stuessy, R Bayer) pp. 589–629. (International Association for Plant Taxonomy: Vienna)

Carr G, King R, Powell A, Robinson H (1999) Chromosome numbers in Compositae. XVIII. American Journal of Botany 86, 1003–1013.
Chromosome numbers in Compositae. XVIII.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnhtVKmuw%3D%3D&md5=9905d8df6f5332d9c3910173482dc1c3CAS | 10406724PubMed |

Cheeseman T, Hemsley W, Smith M (1914) ‘Illustrations of the New Zealand flora.’ (J. Mackay, government printer: Wellington)

Cross E, Quinn C, Wagstaff S (2002) Molecular evidence for the polyphyly of Olearia (Astereae: Asteraceae). Plant Systematics and Evolution 235, 99–120.
Molecular evidence for the polyphyly of Olearia (Astereae: Asteraceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptleht7s%3D&md5=2df902650910329620ec31a33d3a475aCAS |

Curry S, Maslin BR, Maslin JA (2002) ‘Allan Cunningham Australian collecting localities.’ (Australian Biological Resources Study: Canberra)

Eagle AL (2006) ‘Complete trees and shrubs of New Zealand.’ (Te Papa Press: Wellington, New Zealand)

Eastwood A, Gibby M, Cronk Q (2004) Evolution of St Helena arborescent Astereae (Asteraceae): relationships of the genera Commidendrum and Melanodendron. Botanical Journal of the Linnean Society 144, 69–83.
Evolution of St Helena arborescent Astereae (Asteraceae): relationships of the genera Commidendrum and Melanodendron.Crossref | GoogleScholarGoogle Scholar |

Forbes SJ, Ross JH (1988) ‘A census of the vascular plants of Victoria.’ Edn 2. (National Herbarium of Victoria: Melbourne)

Ford KA, Ward JM, Smissen R, Wagstaff SJ, Breitwieser I (2007) Phylogeny and biogeography of Craspedia (Asteraceae: Gnaphalieae) based on ITS, ETS and psbA–trnH sequence data. Taxon 56, 783–794.
Phylogeny and biogeography of Craspedia (Asteraceae: Gnaphalieae) based on ITS, ETS and psbA–trnH sequence data.Crossref | GoogleScholarGoogle Scholar |

Gao T, Yao H, Song J, Zhu Y, Liu C, Chen S (2010) Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evolutionary Biology 10, 324

Heads M (1998) Biodiversity in the New Zealand divaricating tree daisies: Olearia sect. nov. (Compositae). Botanical Journal of the Linnean Society 127, 239–285.

Heenan P, Molloy B (2004) Taxonomy, ecology, and conservation of Olearia adenocarpa (Asteraceae), a new species from braided riverbeds in Canterbury, New Zealand. New Zealand Journal of Botany 42, 21–36.
Taxonomy, ecology, and conservation of Olearia adenocarpa (Asteraceae), a new species from braided riverbeds in Canterbury, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Hooker JD (1856) ‘The botany of the Antarctic voyage of H. M. Discovery Ships Erebus and Terror: Part III, Flora Tasmaniae.’ (Reeve: London)

Hunt Institute for Botanical Documentation (2004) ‘ BPH-2, periodicals with botanical content: constituting a second edition of Botanico–Periodicum–Huntianum.’ (Hunt Institute for Botanical Documentation: Pittsburg, PA)

Karaman-Castro V, Urbatsch L (2009) Phylogeny of Hinterhubera Group and related genera (Hinterhuberinae: Astereae) based on the nrDNA ITS and ETS sequences. Systematic Botany 34, 805–817.
Phylogeny of Hinterhubera Group and related genera (Hinterhuberinae: Astereae) based on the nrDNA ITS and ETS sequences.Crossref | GoogleScholarGoogle Scholar |

Kass E, Wink M (1997) Phylogenetic relationships in the Papilionoideae (family Leguminosae) based on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2). Molecular Phylogenetics and Evolution 8, 65–88.
Phylogenetic relationships in the Papilionoideae (family Leguminosae) based on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szoslCrtA%3D%3D&md5=12b4704faa72d661cd7904ddda9e7bcfCAS | 9242596PubMed |

Kress W, Wurdack K, Zimmer E, Weigt L, Janzen D (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences, USA 102, 8369–8374.
Use of DNA barcodes to identify flowering plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsV2mtbY%3D&md5=d9921b68f9caa7acaf4cb0a70211b9ddCAS |

Lahaye R Van Der Bank M Bogarin D Warner J Pupulin F Gigot G Maurin O Duthoit S Barraclough T Savolainen V 2008 DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences 105 2923 2928

Lander NS, Walsh NG (1989) Olearia astroloba (Asteraceae: Astereae), a new species emdemic to Victoria. Muelleria 7, 123–125.

Li WP, Yang FS, Jivkova T, Yin GS (2012) Phylogenetic relationships and generic delimitation of Eurasian Aster (Asteraceae: Astereae) inferred from ITS, ETS and trnLF sequence data. Annals of Botany 109, 1341–1357.
Phylogenetic relationships and generic delimitation of Eurasian Aster (Asteraceae: Astereae) inferred from ITS, ETS and trnLF sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVOlsb8%3D&md5=9c5411ddfb648f8062b9e3193a5f4bc5CAS | 22517812PubMed |

Lowrey T, Quinn C, Taylor R, Chan R, Kimball R, De Nardi J (2001) Molecular and morphological reassessment of relationships within the Vittadinia group of Astereae (Asteraceae). American Journal of Botany 88, 1279–1289.
Molecular and morphological reassessment of relationships within the Vittadinia group of Astereae (Asteraceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVKitLo%3D&md5=b969091b3a3fd2837e01077aa95dafeaCAS | 11454628PubMed |

Markos S, Baldwin B (2002) Structure, molecular evolution, and phylogenetic utility of the 5ʹregion of the external transcribed spacer of 18S–26S rDNA in Lessingia (Compositae, Astereae). Molecular Phylogenetics and Evolution 23, 214–228.
Structure, molecular evolution, and phylogenetic utility of the 5ʹregion of the external transcribed spacer of 18S–26S rDNA in Lessingia (Compositae, Astereae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOnsLk%3D&md5=089c853e96804e65dba1fe12c2aab494CAS | 12069552PubMed |

McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter N, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’Homme van Reine WF, Smith GF, Wiersema JH, Turnland NJ (2013) ‘International Code of Nomenclature (Melbourne Code). Regnum Vegetabile, Vol. 154.’ (Koeltz Scientific Books: Konigstein).

Messina A, Walsh NG, Hoebee SE, Green PT (2013) A morphological assessment of the Olearia phlogopappa complex (Asteraceae: Astereae). Australian Systematic Botany 26, 31–80.
A morphological assessment of the Olearia phlogopappa complex (Asteraceae: Astereae).Crossref | GoogleScholarGoogle Scholar |

Messina A, Callahan DL, Walsh NG, Hoebee SE, Green PT (2014) Testing the boundaries of closely related daisy taxa using metabolomic profiling. Taxon 63, 367–376.
Testing the boundaries of closely related daisy taxa using metabolomic profiling.Crossref | GoogleScholarGoogle Scholar |

Nesom G (1993) Madagaster (Asteraceae: Astereae), a new genus of subtribe Hinterhuberinae. Phytologia 75, 94–99.

Nesom G (1994) Subtribal classification of the Astereae (Asteraceae). Phytologia 76, 193–274.

Nesom G, Robinson H (2007) Tribe Astereae. In ‘The families and genera of vascular plants, vol. 8. Flowering plants. Eudicots. Asterales’. (Eds JW Kadereit, C Jeffery) pp. 284–342. (Springer: Berlin)

Neuner G, Bannister P (1995) Frost resistance and susceptibility to ice formation during natural hardening in relation to leaf anatomy in three evergreen tree species from New Zealand. Tree Physiology 15, 371–377.
Frost resistance and susceptibility to ice formation during natural hardening in relation to leaf anatomy in three evergreen tree species from New Zealand.Crossref | GoogleScholarGoogle Scholar | 14965945PubMed |

Noyes R (2006) Intraspecific nuclear ribosomal DNA divergence and reticulation in sexual diploid Erigeron strigosus (Asteraceae). American Journal of Botany 93, 470–479.
Intraspecific nuclear ribosomal DNA divergence and reticulation in sexual diploid Erigeron strigosus (Asteraceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFOkt7g%3D&md5=8d3351b630ffb1ec1510e06471e1d22cCAS | 21646206PubMed |

Noyes R, Rieseberg L (1999) ITS sequence data support a single origin for North American Astereae (Asteraceae) and reflect deep geographic divisions in Aster sl. American Journal of Botany 86, 398–412.
ITS sequence data support a single origin for North American Astereae (Asteraceae) and reflect deep geographic divisions in Aster sl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Wmurk%3D&md5=0e5fc2e206fc5722f964a39b067625b5CAS | 10077502PubMed |

Rieseberg L, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5, 65–84.

Roe KE (1971) Terminology of hairs in the genus Solanum. Taxon 20, 501–508.
Terminology of hairs in the genus Solanum.Crossref | GoogleScholarGoogle Scholar |

Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed modelsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=d26483d123ccc51ff88c481fa85be749CAS | 12912839PubMed |

Sancho G, Karaman-Castro V (2008) A phylogenetic study in American Podocominae (Asteraceae: Astereae) based on morphological and molecular data. Systematic Botany 33, 762–775.
A phylogenetic study in American Podocominae (Asteraceae: Astereae) based on morphological and molecular data.Crossref | GoogleScholarGoogle Scholar |

Sang T, Crawford D, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84, 1120–1136.
Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFejuro%3D&md5=bea4b3633e5035c504b746e387b9a92aCAS | 21708667PubMed |

Shaw J, Lickey E, Beck J, Farmer S, Liu W, Miller J, Siripun K, Winder C, Schilling E, Small R (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92, 142–166.
The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Klsbc%3D&md5=b689305626d9fcff7aa95c9109209391CAS | 21652394PubMed |

Shaw J, Lickey E, Schilling E, Small R (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94, 275–288.
Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOjsLg%3D&md5=e2e5ab07b9c93276ab570f470d94df24CAS | 21636401PubMed |

Sims J (1812) Aster liratus. Curtis’s Botanical Magazine 37, t. 1509.

Solbrig OT, Anderson LC, Kyhos DW, Raven PH, R¸denberg L (1964) Chromosome numbers in Compositae V. Astereae II. American Journal of Botany 51, 513–519.
Chromosome numbers in Compositae V. Astereae II.Crossref | GoogleScholarGoogle Scholar |

Sparshott KM, Bostock PD (1993) ‘An assessment of rare and threatened wetlands flora and their habitats in National estate interim listed areas on North Stradbroke Island.’ (Queensland Herbarium: Brisbane)

Stafleu FA (1976) ‘Taxonomic literature: a selective guide to botanical publications and collections with dates, commentaries and types.’ (Bohn, Scheltema & Holkema: Utrecht, The Netherlands)

Swofford DL (2001) ‘PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0.’ (Sinauer Associates: Sunderland, MA)

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=57e61e9e61aa5b40d1c50920042a66fcCAS | 21546353PubMed |

Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. American Journal of Botany 94, 302–312.
A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOjsLY%3D&md5=f808853a88081ef04a12fa7c86177f4eCAS | 21636403PubMed |

Urbatsch L, Roberts R, Karaman-Castro V (2003) Phylogenetic evaluation of Xylothamia, Gundlachia, and related genera (Asteraceae, Astereae) based on ETS and ITS nrDNA sequence data. American Journal of Botany 90, 634–649.
Phylogenetic evaluation of Xylothamia, Gundlachia, and related genera (Asteraceae, Astereae) based on ETS and ITS nrDNA sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVSgtr4%3D&md5=2e419354d714435e85c360aa9e58bf58CAS | 21659159PubMed |

Van Royen P (1983) Olearia. In ‘The Alpine flora of New Guinea, Vol. 4’. pp. 3199–3245. (Cramer: Vaduz, Germany)

Wagstaff SJ, Breitwieser I (2002) Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences. Plant Systematics and Evolution 231, 203–224.
Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1yisL4%3D&md5=bc5d7cade50714596b6e0d6345c797c3CAS |

Wagstaff SJ, Breitwieser I, Quinn C, Ito M (2007) Age and origin of enigmatic megaherbs from the subantarctic islands. In ‘Nature Precedings’. Available at http://hdl.handle.net/10101/npre.2007.1272.1 [Verified 29 October 2014]

Wagstaff SJ, Breitwieser I, Ito M (2011) Evolution and biogeography of Pleurophyllum (Astereae, Asteraceae), a small genus of megaherbs endemic to the subantarctic islands. American Journal of Botany 98, 62–75.
Evolution and biogeography of Pleurophyllum (Astereae, Asteraceae), a small genus of megaherbs endemic to the subantarctic islands.Crossref | GoogleScholarGoogle Scholar | 21613085PubMed |

Walsh NG, Entwisle TJ (1999) ‘Flora of Victoria. Vol. 4.’ (Inkata Press: Melbourne)

Watanabe K, Short P, Denda T, Suzuki Y, Ito M, Yahara T, Kosuge K (1996) Chromosome number determinations in the Australian Astereae (Asteraceae). Muelleria 9, 197–228.

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR proticols: a guide to methods and applications’. (Eds MA Innis, DH Gelfland, JJ Sninsky, TJ White) pp. 315–322. (Academic Press: New York)

Willis JH (1956) Systematic notes on Victorian Compositae – 1. Muelleria 1, 24–33.

Wilson HD, Garnock-Jones PJ (1992) Two new species names in Olearia (Asteraceae) from New Zealand. New Zealand Journal of Botany 30, 365–368.
Two new species names in Olearia (Asteraceae) from New Zealand.Crossref | GoogleScholarGoogle Scholar |