A reappraisal of the generic concepts of Epacris, Rupicola and Budawangia (Ericaceae, Epacridoideae, Epacrideae) based on phylogenetic analysis of morphological and molecular data
Christopher J. Quinn A B C , Ronald K. Crowden D , Elizabeth A. Brown A G , Michael J. Southam B , Andrew H. Thornhill C E and Darren M. Crayn C F HA National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
B School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia.
C Australian Tropical Herbarium, James Cook University, McGregor Road, Smithfield, Qld 4878, Australia.
D Tasmanian Herbarium, Tasmanian Museum and Art Gallery, College Road, Sandy Bay, Tas. 7001, Australia.
E Centre for Tropical Environmental Sustainability Science, James Cook University, Cairns, Qld 4870, Australia.
F Centre for Tropical Biodiversity and Climate Change, James Cook University, Townsville, Qld 4814, Australia.
G Deceased.
H Corresponding author. Email: darren.crayn@jcu.edu.au
Australian Systematic Botany 28(1) 63-77 https://doi.org/10.1071/SB13009
Submitted: 6 March 2013 Accepted: 16 June 2015 Published: 10 September 2015
Abstract
The genus Epacris Cav. (Ericaceae, Epacridoideae, Epacrideae) contains 46 species in south-eastern Australia and two species in New Zealand. Two small genera, Rupicola Maiden & Betche (four spp.) and Budawangia I.Telford (monotypic), both having restricted distributions in the mountains of central eastern New South Wales, have been generally regarded as closely related to but distinct from Epacris. We tested the monophyly and relationships of these three genera using parsimony and Bayesian analysis of morphological and plastid atpB–rbcL DNA sequence datasets. Separate and combined analyses all place Budawangia and Rupicola within Epacris with moderate to strong support. We conclude that there are insufficient grounds for maintaining Rupicola and Budawangia as distinct from Epacris. The required nomenclatural changes are made herein.
References
Allen HH (1961) Epacridaceae. In ‘Flora of New Zealand. Vol. 1’. pp. 513–539. (Government Printer: Wellington, New Zealand)Bentham G (1869) Epacrideae. In ‘Flora Australiensis. Vol. 4’. pp. 142–265. (Reeve: London)
Brown R (1810) Epacrideae. In ‘Prodromus florae Novae Hollandiae. Vol. 1’. pp. 162–171. (Johnson: London)
Cavanilles AJ (1797) ‘Icones et Descriptiones Plantarum.’ (Regia Typographia: Madrid)
CHAH (2014) Australian plant census, IBIS database, Centre for Australian National Biodiversity Research. (Council of Heads of Australasian Herbaria) Available at http://www.chah.gov.au/apc/index.html [Verified 8 July 2014]
Cherry W, Gadek PA, Brown EA, Heslewood MM, Quinn CJ (2001) Pentachondra dehiscens sp. nov.: an aberrant new member of Styphelieae. Australian Systematic Botany 14, 513–533.
| Pentachondra dehiscens sp. nov.: an aberrant new member of Styphelieae.Crossref | GoogleScholarGoogle Scholar |
Crayn DM, Quinn CJ (1998) Archerieae: a new tribe in Epacridaceae. Australian Systematic Botany 11, 23–24.
| Archerieae: a new tribe in Epacridaceae.Crossref | GoogleScholarGoogle Scholar |
Crayn DM, Quinn CJ (2000) The evolution of the atpB–rbcL intergenic spacer in the epacrids (Ericales) and the systematic and evolutionary implications. Molecular Phylogenetics and Evolution 16, 238–252.
| The evolution of the atpB–rbcL intergenic spacer in the epacrids (Ericales) and the systematic and evolutionary implications.Crossref | GoogleScholarGoogle Scholar |
Crayn DM, Kron KA, Gadek PA, Quinn CJ (1996a) Delimitation of Epacridaceae: preliminary molecular evidence. Annals of Botany 77, 317–321.
| Delimitation of Epacridaceae: preliminary molecular evidence.Crossref | GoogleScholarGoogle Scholar |
Crayn DM, Gadek PA, Quinn CJ (1996b) Use of the atpB–rbcL spacer region to augment rbcL based phylogenetic studies: an example from Epacridaceae (Ericales). American Journal of Botany 83, 148
Crayn DM, Kron KA, Gadek PA, Quinn CJ (1998) Phylogenetics and evolution of epacrids - a molecular analysis using the plastid gene rbcL with a reappraisal of the position of Lebetanthus. Australian Journal of Botany 46, 187–200.
| Phylogenetics and evolution of epacrids - a molecular analysis using the plastid gene rbcL with a reappraisal of the position of Lebetanthus.Crossref | GoogleScholarGoogle Scholar |
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–15.
Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge A (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
| Parsimony jackknifing outperforms neighbor-joining.Crossref | GoogleScholarGoogle Scholar |
Forster JR, Forster G (1776) Characteres generum Plantarum, Quas. In ‘Itinere ad insulas maris Australis’. (White, Cadell and Elmsly: London)
Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of a noncoding region of the chloroplast genome. Molecular Phylogenetics and Evolution 2, 52–64.
| Evolution of a noncoding region of the chloroplast genome.Crossref | GoogleScholarGoogle Scholar |
Johnson KA, Holland BR, Heslewood MM, Crayn DM (2012) Supermatrices, supertrees and serendipitous scaffolding: inferring a well-resolved, genus-level phylogeny of Styphelioideae (Ericaceae) despite missing data. Molecular Phylogenetics and Evolution 62, 146–158.
| Supermatrices, supertrees and serendipitous scaffolding: inferring a well-resolved, genus-level phylogeny of Styphelioideae (Ericaceae) despite missing data.Crossref | GoogleScholarGoogle Scholar |
Kron KA, Judd WS, Stephens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) A phylogenetic classification of Ericaceae: molecular and morphological evidence. Botanical Review 68, 335–423.
| A phylogenetic classification of Ericaceae: molecular and morphological evidence.Crossref | GoogleScholarGoogle Scholar |
Maddison DR, Maddison WP (2000) ‘MacClade. Version 4.’ (Sinauer: Sunderland, MA)
Maiden JH, Betche E (1898–1899) Notes from the Botanic Gardens, Sydney. Proceedings of the Linnean Society of New South Wales 23, 772–779.
McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersema JH, Turland N (2012) ‘International code of nomenclature for algae, fungi, and plants (Melbourne code).’ (Koeltz Scientific Books: Koenigstein, Germany)
Menadue Y, Crowden RK (1991) The taxonomic value of pollen surface patterns in some Australian Epacris (Epacridaceae). In ‘Aspects of Tasmanian botany: a tribute to Winifred Curtis’. (Eds MR Banks, SJ Smith, AE Orchard, G Kantvilas) pp. 113–118. (Royal Society of Tasmania: Hobart)
Mueller F (1867) ‘Fragmenta phytographiae Australiae. Vol. 6.’ (Government Printer: Melbourne)
Powell JM (1992) Epacridaceae. In ‘Flora of New South Wales. Vol. 3’. (Ed. G. Harden) pp. 401–434. (New South Wales University Press: Sydney)
Powell JM, Chapman AR, Doust ANL (1987) Classification and generic status in the Epacridaceae: a preliminary analysis. Australian Systematic Botany Society Newsletter 53, 70–78.
Powell JM, Crayn DM, Gadek PA, Quinn CJ, Morrison DA, Chapman AR (1996) A reassessment of relationships within Epacridaceae. Annals of Botany 77, 305–315.
| A reassessment of relationships within Epacridaceae.Crossref | GoogleScholarGoogle Scholar |
Powell JM, Morrison DA, Gadek PA, Crayn DM, Quinn CJ (1997) Relationships and generic concepts within Styphelieae (Epacridaceae). Australian Systematic Botany 10, 15–29.
| Relationships and generic concepts within Styphelieae (Epacridaceae).Crossref | GoogleScholarGoogle Scholar |
Reveal JL (2012) Newly required infrafamilial names mandated by changes in the code of nomenclature for algae, fungi and plants. Phytoneuron 2012–33, 1–32.
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |
Schuh RT, Brower AVZ (2009) ‘Biological systematics: principles and application.’ 2nd edn. (Cornell University Press: Ithaca, NY)
Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
| Gaps as characters in sequence-based phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |
Sprengel C (1825) Epacris. In ‘Systema vegetabilium. Vol. 1’. pp. 628–630. (Sumtibus Librariae Dieterichianae: Gottingae, Germany)
Swofford DL (2002) ‘PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10.’ (Sinauer: Sunderland, MA)
Telford IRH (1992) Budawangia and Rupicola, new and revised genera of Epacridaceae. Telopea 5, 229–239.
| Budawangia and Rupicola, new and revised genera of Epacridaceae.Crossref | GoogleScholarGoogle Scholar |
Thiele KR (2009) A new circumscription for Lysinema ciliatum (Ericaceae: Styphelioideae: Epacrideae) and reinstatement of L. pentapetalum. Nuytsia 19, 265–275.
Voss EG, Burdet HM, Chaloner WG, Demoulin V, Hiepko P, McNeill J, Meikle RD, Nicolson DH, Rollins RC, Silva PC, Greuter W (Eds) (1983) ‘International Code of Botanical Nomenclature, Adopted by the Thirteenth International Botanical Congress, Sydney, August 1981’, Regnum Vegetabile, vol. 111. (Bohn, Scheltema and Holkema: Utrecht; and W. Junk: Boston, MA)
Watson L (1967) Taxonomic implications of a comparative anatomical study of Epacridaceae. New Phytologist 66, 495–504.
| Taxonomic implications of a comparative anatomical study of Epacridaceae.Crossref | GoogleScholarGoogle Scholar |