Phylogeny, major clades and infrageneric classification of Corymbia (Myrtaceae), based on nuclear ribosomal DNA and morphology
Carlos Parra-O. A C , Michael J. Bayly A , Andrew Drinnan A , Frank Udovicic B and Pauline Ladiges A DA School of Botany, The University of Melbourne, Vic. 3010, Australia.
B Royal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia.
C Instituto de Ciencias Naturales, Universidad Nacional de Colombia, A. A. 7495, Bogotá, Colombia.
D Corresponding author. Email: p.ladiges@unimelb.edu.au
Australian Systematic Botany 22(5) 384-399 https://doi.org/10.1071/SB09028
Submitted: 12 June 2009 Accepted: 2 September 2009 Published: 28 October 2009
Abstract
Phylogenetic relationships of sections and species within Corymbia (Myrtaceae), the bloodwood eucalypts, were evaluated by using combined analyses of nuclear rDNA (ETS + ITS) and morphological characters. Combining morphological characters with molecular data provided resolution of relationships within Corymbia. The analyses supported the monophyly of the genus and recognition of the following two major clades, treated here as new subgenera: subgenus Corymbia, including informal sections recognised by Hill and Johnson (1995), namely Rufaria (red bloodwoods), Apteria and Fundoria; and subgenus Blakella, including sections Politaria (spotted gums), Cadagaria, Blakearia (paper-fruited bloodwoods or ghost gums) and Ochraria (yellow bloodwoods). Hill and Johnson’s section Rufaria is monophyletic if Apteria and Fundoria are included. It is evident that, among the red bloodwoods, series are not monophyletic and several morphological characters result from convergent evolution. There was strong morphological and molecular evidence that the three species of red bloodwoods that occur in south-western Western Australia (series Gummiferae: C. calophylla and C. haematoxylon, and series Ficifoliae: C. ficifolia) form a monophyletic group, separate from the eastern C. gummifera (series Gummiferae), which is probably sister to the clade of all other red bloodwoods. Phylogenetic results supported recognition of new taxonomic categories within Corymbia, and these are formalised here.
Acknowledgements
We thank Ken Hill, Peter Wilson and staff of the Mt Annan Botanic Gardens and Dean Nicolle, Currency Creek Arboretum, for access to collections and assistance. Eve Lucas and Peter de Lange provided advice on ETS primers for use in Myrtaceae. Carlos Parra-O. is grateful to The University of Melbourne for an International Postgraduate Scholarship, to the Albert Shimmin Memorial Fund of the Faculty of Sciences of The University of Melbourne, and to the Universidad Nacional de Colombia for its continuous support. This work was funded by an Australian Research Council (ARC) Linkage grant, including financial support from the Maud Gibson Trust, RBG Melbourne and RBG Sydney.
Baldwin BG, Markos S
(1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10, 449–463.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Bayly MJ, Ladiges PY
(2007) Divergent paralogues of ribosomal DNA in eucalypts (Myrtaceae). Molecular Phylogenetics and Evolution 44, 346–356.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Bayly MJ,
Udovicic F,
Gibbs AK,
Parra-O. C, Ladiges PY
(2008) Ribosomal DNA pseudogenes are widespread in eucalypts (Myrtaceae): implications for phylogenetic analysis. Cladistics 24, 131–146.
| Crossref | GoogleScholarGoogle Scholar |
Berry PE,
Hahn WJ,
Sytsma KJ,
Hall JC, Mast A
(2004) Phylogenetic relationships and biogeography of Fuchsia (Onagraceae) based on noncoding nuclear and chloroplast DNA data. American Journal of Botany 91, 601–614.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Berry PE,
Hipp AL,
Wurdack KJ,
Van Ee B, Riina R
(2005) Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and trnL–trnF DNA sequence data. American Journal of Botany 92, 1520–1534.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Boland DJ, Sedgley M
(1986) Stigma and style morphology in relation to taxonomy and breeding system in Eucalyptus and Angophora (Myrtaceae). Australian Journal of Botany 34, 569–584.
| Crossref | GoogleScholarGoogle Scholar |
Brooker MIH
(2000) A new classification of genus Eucalyptus L’Hér. (Myrtaceae). Australian Systematic Botany 13, 79–148.
| Crossref | GoogleScholarGoogle Scholar |
Brooker MIH, Bean AR
(1991) A revision of the yellow bloodwoods (Myrtaceae: Eucalyptus series Naviculares Maiden). Austrobaileya 3, 409–437.
Buckler ES,
Ippolito A, Holtsford TP
(1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145, 821–832.
|
CAS |
PubMed |
Catalán P,
Kellogg EA, Olmstead RG
(1997) Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Molecular Phylogenetics and Evolution 8, 150–166.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Drinnan AN, Ladiges PY
(1988) Perianth development in Angophora and the bloodwood eucalypts (Myrtaceae). Plant Systematics and Evolution 160, 219–239.
| Crossref | GoogleScholarGoogle Scholar |
Drinnan AN, Ladiges PY
(1989) Operculum development in the Eudesmieae B eucalypts and Eucalyptus caesia (Myrtaceae). Plant Systematics and Evolution 165, 227–237.
| Crossref | GoogleScholarGoogle Scholar |
Drinnan AN, Ladiges PY
(1991) Floral development and systematic position of Eucalyptus curtisii. Australian Systematic Botany 4, 539–552.
| Crossref | GoogleScholarGoogle Scholar |
Farris JS,
Källersjö M,
Kluge AG, Bult C
(1995) Testing significance of incongruence. Cladistics 10, 315–319.
| Crossref | GoogleScholarGoogle Scholar |
Hill KD, Johnson LAS
(1995) Systematic studies in the eucalypts 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 6, 185–504.
Käss E, Wink M
(1997) Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of the rbcL gene and ITS 1 + 2 regions of rDNA. Plant Systematics and Evolution 208, 139–167.
| Crossref | GoogleScholarGoogle Scholar |
Ladiges PY
(1984) A comparative study of trichomes in Angophora Cav. and Eucalyptus L’Hérit – a question of homology. Australian Journal of Botany 32, 561–574.
| Crossref | GoogleScholarGoogle Scholar |
Ladiges PY, Humphries CJ
(1983) A cladistic study of Arillastrum, Angophora and Eucalyptus (Myrtaceae). Botanical Journal of the Linnean Society 87, 105–134.
| Crossref | GoogleScholarGoogle Scholar |
Ladiges PY, Udovicic F
(2000) Comment on a new classification of the eucalypts. Australian Systematic Botany 13, 149–152.
| Crossref | GoogleScholarGoogle Scholar |
Martins L, Hellwig FH
(2005) Systematic position of the genera Serrulata and Klasea within Centaureinae (Cardueae, Asteraceae) inferred from ETS and ITS sequence data and new combinations in Klasea. Taxon 54, 632–638.
McNeill J,
Barrie FR,
Burdet HM,
Demoulin V,
Hawksworth DL,
Marhold K,
Nicolson DH,
Prado J,
Silva PC,
Skog JE,
Wiersema JH, Turland NJ
(2006) International Code of Botanical Nomenclature (Vienna Code) adopted by the seventeenth international botanical congress Vienna, Austria, July 2005. Regnum Vegetabile 146, 1–568.
Ochieng JW,
Steane DA,
Ladiges PY,
Baverstock PR,
Henry RJ, Shepherd M
(2007a) Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genetics and Molecular Biology 30, 1125–1134.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
Ochieng JW,
Henry RJ,
Baverstock PR,
Steane DA, Shepherd M
(2007b) Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Molecular Phylogenetics and Evolution 44, 752–764.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Parra-O. C,
Bayly MJ,
Udovicic F, Ladiges PY
(2006) ETS sequences support the monophyly of the eucalypt genus Corymbia (Myrtaceae). Taxon 55, 653–663.
Steane DA,
Nicolle D,
McKinnon GE,
Vaillancourt RE, Potts BM
(1999) ITS-sequence data resolve higher-level relationships among the eucalypts. Molecular Phylogenetics and Evolution 12, 215–223.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Steane DA,
Nicolle D,
McKinnon GE,
Vaillancourt RE, Potts BM
(2002) Higher-level relationships among the eucalypts are resolved by ITS-sequence data. Australian Systematic Botany 15, 49–62.
| Crossref | GoogleScholarGoogle Scholar |
Udovicic F, Ladiges PY
(2000) Informativeness of nuclear and chloroplast DNA regions and the phylogeny of the eucalypts and related genera (Myrtaceae). Kew Bulletin 55, 633–645.
| Crossref | GoogleScholarGoogle Scholar |
Whittock SP,
Steane DA,
Vaillancourt RE, Potts BM
(2003) Molecular evidence shows that the tropical boxes (Eucalyptus subgenus Minutifructus) are over-ranked. Transactions of the Royal Society of South Australia 127, 27–32.
Wilson PG,
O’Brien MM,
Gadek PA, Quinn CJ
(2001) Myrtaceae revisited: a reassessment of infrafamilial groups. American Journal of Botany 88, 2013–2025.
| Crossref | GoogleScholarGoogle Scholar |
Wilson PG,
O’Brien MM,
Heslewood MM, Quinn CJ
(2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
| Crossref | GoogleScholarGoogle Scholar |
Wright SD,
Yong CG,
Wichman SR,
Dawson JW, Gardner RC
(2001) Stepping stones to Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS + ETS). Journal of Biogeography 28, 769–774.
| Crossref | GoogleScholarGoogle Scholar |