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ABSTRACT: Oceanic rogue waves belong to a well-established class of phenomena but their study is hindered due to the 
great danger that they represent. They exist not only at the surface of the open ocean but they also hit coastal areas as well as 
appear internally in deeper layers of the ocean. The amplitude of the latter may exceed several times the amplitude of rogue 
waves at the surface. Surface rogue waves in the deep ocean represent threat even for large ocean liners while rogue waves in 
shallow waters are dangerous for coastal structures. On the other hand, internal rogue waves are hazardous for submarines. The 
experimental research of all three types of rogue waves is difficult. The theory provides certain degree of understanding of such 
waves. Some of the recent achievements in this area of research are reviewed in this article. 
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INTRODUCTION

Waves that appear from nowhere are waves that we do 
not expect. Due to the unexpected nature of these events, 
they are dangerous for people who experience them. 
Mathematically, this feature can be represented by solutions 
of evolution equations that are localised both in time and 
in space. In addition, the amplitudes of these waves are 
commonly higher than the amplitude of regular waves. The 
latter feature increases the danger carried by these waves. 
There is a large variety of rogue waves in nature. Even if 
we restrict ourselves to oceanic waves, we have to take into 
account several types. Firstly, there are surface waves on the 
interface between water and air (Kharif 2009). Secondly, 
there are internal waves in stratified media such as ocean 
water with salinity that varies along the vertical direction 
(Grimshaw et al. 2010). Shallow-water waves are another 
type of waves that appear in coastal areas (Soomere 2010). 
Rogue waves present considerable danger as they are rare, 
presently unpredictable and can impact with tremendous 
force. 

There are a number of accounts of rogue waves in the 
media, in research articles (Nikolkina & Didenkulova 
2011) and those recorded in scientific measurements. One 
of these occurred near Sydney on Saturday, 9 January 
2016, when a giant rogue wave injured 60 people (see 
http://strangesounds.org/2016/01/giant-rogue-wave-
slams-into-swimmers-sydney-australia-video.html). This 
was an example of a shallow-water rogue wave that hits 
the coast line. 

Another well-remembered example of a similar event 
occurred on ‘Black Sunday’, 6 February 1938, when a set of 
three consecutive rogue waves hit Bondi beach in Sydney, 
NSW (see https://bondisurfclub.com/the-club/history/

black-sunday/). The size of these waves and the degree 
of their abruptness were such that many people suffered: 
some 200 swimmers were swept out into the sea; thirty-
five unconscious swimmers were revived on the beach; and 
five people died. To date, it was the largest rescue operation 
in Australian history triggered by shallow-water rogue 
waves. Although extremely large waves at coastal areas are 
relatively rare, every year a few of them do happen around 
the world. Their careful study may prevent future potential 
disasters.

Deep ocean areas represent the most common place of 
occurrence of rogue waves. These are large, unexpected 
surface-water waves that can be extremely dangerous, 
even to large ships such as ocean liners and container 
ships. One known event is the Draupner rogue wave 
(Cavaleri et al. 2016) which had a measured height of 
25.6 metres. Big waves can break windows on the decks 
of ships and cause damage and injuries to passengers. One 
example took place in January 2009 in the Bay of Biscay. 
A cruise liner was hit by 50-foot waves and had to return 
to Dover, England (see http://www.dailymail.co.uk/news/
article-1129302/Pictured-Storm-tosses-massive-cruise-
liner-like-toy-boat.html). Other examples can be found in 
Nikolkina & Didenkulova (2011).

An additional type of oceanic rogue wave is the so-
called internal wave, which appears in stratified media such 
as ocean waters. The stratification is caused by variations 
in salinity, pressure, temperature or underwater flows. 
Internal waves propagate along the layers of stratification 
and are invisible at the surface. The amplitude of internal 
rogue waves can be as large as 170 metres (Alford 2015), 
which is significantly larger than the amplitude of rogue 
waves at the water surface. Such internal waves may shift 
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submarines to a depth where pressure exceeds the capacity 
of the hull. An internal wave may have caused the KPI 
Nanggala 402 submarine disaster on 21 April 21 2021 
(see https://www.bbc.com/news/world-asia-56871694). 
Indonesian Navy officials believe that an internal rogue 
wave is a more likely explanation for the submarine 
disaster than other theories put forward after the incident.

Varieties of oceanic rogue waves include but are not 
limited to the three basic types that are illustrated above. 
Rogue waves do exist and require careful analysis in order 
to understand such phenomena and to develop techniques 
for preventing disasters. The very first step in this direction 
is modelling water waves based on partial differential 
equations. High amplitudes of these waves suggest that 
the corresponding equations are intrinsßically nonlinear 
(Osborne 2010). The next step is finding the solutions 
of these equations that describe the extreme waves. As 
rogue waves are unexpected, the solutions that describe 
them must be localised both in time and in space. Below, 
each type of rogue wave that has been illustrated above 
is considered separately, starting with the most common, 
those that occur on the water surface above deep areas of 
the world oceans.

DEEP-WATER ROGUE WAVES

Deep-water unidirectional surface waves can be described 
using the nonlinear Schrödinger equation (NLSE) (Osborne 
2010; Zakharov 1968). It is written here in dimensionless 
form,

where y is the normalised wave envelope of the water 
surface elevation, x is the normalised distance along the 
water surface and t is the normalised retarded time. For 
unidirectional propagation, one-dimensional modelling 
of waves is the simplest and most illustrative way of 
describing them. The model assumes that the wave and 
its envelope are propagating the same way. However, we 
should keep in mind that due to the existence of the second 
dimension of the water surface, this is not always the case 
(Chabchoub et al. 2019). 

One of the solutions of the NLSE is known as Peregrine 
breather: 

This is a unique rational solution of the NLSE. The modulus 
of this solution is shown in Figure 1. The main peak of 
the solution bulges on a homogeneous background and is 
localised both in time and in space. The amplitude of the 

main peak is three times the amplitude of the background. 
As y  is the envelope of waves, this means that the wave 
amplitude at the maximum is 3 times the amplitude of 
surrounding waves. This feature of the solution fits perfectly 
the definition of rogue waves (Akhmediev et al. 2009). 
In other words, this solution is a likely candidate for the 
description of oceanic rogue waves. Experimental rogue 
waves have been observed in a water tank (Chabchoub et 
al. 2011). 

Peregrine waves are not the only type that fits the 
definition of rogue waves. There is an infinite family 
of higher-order rational solutions with progressively 
increasing amplitudes 5, 7, 9, 11, … etc. (Akhmediev et al. 
2009). These solutions are more complicated, although all 
of them are rational and all of them can be considered as 
candidates for even stronger rogue waves than the lowest 
order one. For example, the second-order rogue wave 
solution is shown in Figure 2. The main peak here is higher 
and narrower than in the case of the first-order solution. 
Thus, it could be more dangerous than the first-order rogue 
wave. Higher-order rogue waves have also been observed 
experimentally (Chabchoub et al. 2012a, 2012b). 
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Figure 1: First-order rogue wave solution of the NLSE with the 
maximal amplitude equal to 3.

Figure 2: Second-order rogue wave solution of the NLSE with 
the maximal amplitude equal to 5.
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INTERNAL ROGUE WAVES

The term ‘internal rogue wave’ has been coined by 
Grimshaw et al. (2010). It was also suggested in Grimshaw 
et al. (2010) that in certain approximations internal waves 
could be modelled using the Gardner equation (GE):

The meaning of variables in the GE is similar to those in 
the case of the NLSE. The function y here describes the 
vertical displacement of water particles, x is the distance 
along the stratification, while t is the retarded time.

There are a number of other ways to model 
mathematically nonlinear waves in layered media (Apel 
et al. 2007; Grimshaw et al. 2007; Zheng 2002). These 
techniques vary in complexity. The convenience of using 
the GE is in dealing with a single partial differential 
equation as in the above case of deep water waves. Then 
the solutions of the GE localised both in x and t would 
describe rogue waves.

Following Bokaeeyan et al. (2019), we assume that 
the rogue wave solutions of this equation are its rational 
solutions, as in the case of the NLSE. However, in contrast 
to the NLSE case, this is not the first-order solution. We 
give here the third-order solution that exemplifies the 
internal rogue wave:

where 

and 

This solution is illustrated in Figure 3. It also has a high-
amplitude central peak at the origin equal to 3. However, the 
background of this solution is not homogeneous, as in the 
case of the NLSE rogue wave solution. There are tails with 
lower amplitude that extend to infinity. Thus, excitation of 
such rogue waves requires specific initial conditions. More 
details can be found in Bokaeeyan (2019).

SHALLOW-WATER ROGUE WAVES

There are various approaches to shallow-water rogue 
waves. Here, the work of Ankiewicz et al. (2019) is 
followed, based on solutions of the complex Korteveg-de 
Vries (KdV) equation. 

The KdV equation is well known in the theory of shallow 
water waves (Korteweg & De Vries 1895). However, the 
function q in this equation is commonly considered to be 
a real variable that is responsible for water level elevation. 
This equation was the main tool for developing the theory 
of solitons, or solitary waves (Zabusky & Kruskal 1965). 
The real KdV equation does not have rogue wave solutions 
and it is assumed that the function q is complex (Ankiewicz 
et al. 2019). When this is case, the KdV equation acquires 
rogue wave solutions. They are also rational solutions, 
with the main peak localised both in space and time. 
However, this is not the first-order solution. Only higher-
order rational solutions start to have rogue wave features, 
for example, the third-order rogue wave solution of the 
complex KdV has the form:

where
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Figure 3: Third-order rogue wave solution of the GE with the 
maximal amplitude equal to 3.
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and 

The modulus of the complex q-function for this solution is 
shown in Figure 4. It has a large peak at the centre equal to 
49. The peak is localised both in x and t directions which 
is the characteristic of a rogue wave. The basic background 
of the solution is 1 while there are tails on this background 
extending to infinity. More details can be found in 
Ankiewicz et al. (2019).

CONCLUSIONS

Taking into account the large variety of rogue waves that 
exist in nature, there is no universal way of describing 
them. Only three types of rogue waves and the simplest 
ways of modelling them that provide us with major features 
of the phenomenon have been considered here. Clearly, the 
models can be improved in many ways. Even if we restrict 
ourselves to oceanic surface rogue waves, their modelling 
can be made more accurate extending the NLSE to its 
modified versions. There are several extensions known 
today (Dysthe 1979; Sedletsky 2003; Slunyaev 2005). 
Correspondingly, the solutions of the NLSE also have to 
be modified in order to obtain more accurate descriptions. 
More realistic models must take into account the two-
dimensional feature of oceanic wave propagation. This 
has been done, for example, by Onorato et al. (2006) and 
Chabchoub et al. (2019).

Mathematical modelling of internal rogue waves and 
shallow water rogue waves can also be improved. Ideas 
presented in this review article are only the beginning of 

research efforts in this direction. Developing these ideas is 
of practical interest. Understanding and timely predicting 
the appearance of rogue waves may save lives and reduce 
the damages that they cause. Continuing this research will 
also contribute to understanding similar waves in optics 
and other branches of science.
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