Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Intensive and extensive movements of feral camels in central Australia

Cameron Ryan Wells A C and Mark Lethbridge B
+ Author Affiliations
- Author Affiliations

A Ecoknowledge, PO Box 632 Mylor, SA 5153, Australia.

B Faculty of Science, Flinders University, Biological Sciences Building, Bedford Park, SA 5042, Australia.

C Corresponding author. Email: cameron@agriknowledge.com.au

The Rangeland Journal 42(3) 195-210 https://doi.org/10.1071/RJ19054
Submitted: 9 January 2020  Accepted: 22 August 2020   Published: 28 October 2020

Abstract

A better understanding of the movement of feral dromedary camels (Camelus dromedarius) in Australia would be useful for planning removal operations (harvest or culling), because the pattern and scale of camel movement relates to the period they reside in a given area, and thus the search effort, timing and frequency of removal operations. From our results, we suspect that the dune direction influences how camels move across central Australia; particularly effects like the north–south longitudinal dune systems in the Simpson Desert, which appeared to elongate camel movement in the same direction as the dunes. We called this movement anisotropy. Research suggests camel movement in Australia is not migratory but partially cyclic, with two distinctive movement patterns. Our study investigated this further by using satellite tracking data from 54 camels in central Australia, recorded between 2007 and 2016. The mean tracking period for each animal was 363.9 days (s.e.m. = 44.1 days). We used a method labelled multi-scale partitioning to test for changes in movement behaviour and partitioned more localised intensive movements within utilisation areas, from larger-scale movement, called ranging. This involved analysing the proximity of movement trajectories to other nearby trajectories of the same animal over time. We also used Dynamic Brownian Bridges Movement Models, which consider the relationship of consecutive locations to determine the areas of utilisation. The mean utilisation area and duration of a camel (n = 658 areas) was found to be 342.6 km2 (s.e.m. = 33.2 km2) over 23.5 days (s.e.m. = 1.6 days), and the mean ranging distance (n = 611 ranging paths) was a 45.1 km (s.e.m. = 2.0 km) path over 3.1 days (s.e.m. = 0.1 days).

Keywords: anisotropy, management, model, pests, support.


References

Atkinson, T., Hacker, R. B., Melville, G. J., and Reseigh, J. (2019). Land managers’ and service providers’ perspectives on the magnitude, impact and management of non-domestic grazing pressure in the southern rangelands of Australia. The Rangeland Journal 41, 461–476.
Land managers’ and service providers’ perspectives on the magnitude, impact and management of non-domestic grazing pressure in the southern rangelands of Australia.Crossref | GoogleScholarGoogle Scholar |

Bastin, G., and ACRIS Management Committee (2008a). Central Ranges Bioregion, National Land and Water Resources Audit (NLWRA), Canberra, ACT. Available at: https://www.environment.gov.au/system/files/resources/a8015c25-4aa2-4833-ad9c-e98d09e2ab52/files/bioregion-central-ranges.pdf (accessed 27 September 2016).

Bastin, G., and ACRIS Management Committee (2008b). Gibson Desert Bioregion, National Land and Water Resources Audit (NLWRA), Canberra, ACT. Available at: https://www.environment.gov.au/system/files/resources/a8015c25-4aa2-4833-ad9c-e98d09e2ab52/files/bioregion-gibson-desert.pdf (accessed 27 September 2016).

Bastin, G., and ACRIS Management Committee (2008c). Great Victoria Desert Bioregion, National Land and Water Resources Audit (NLWRA), Canberra, ACT. Available at: https://www.environment.gov.au/system/files/resources/a8015c25-4aa2-4833-ad9c-e98d09e2ab52/files/bioregion-great-victoria-desert.pdf (accessed 27 September 2016).

Bastin, G., and ACRIS Management Committee (2008d). Nullarbor Bioregion, National Land and Water Resources Audit (NLWRA), Canberra, ACT. Available at: https://www.environment.gov.au/system/files/resources/a8015c25-4aa2-4833-ad9c-e98d09e2ab52/files/bioregion-nullarbor.pdf (accessed 27 September 2016).

Bastin, G., and ACRIS Management Committee (2008e). Simpson–Strzelecki Dunefields Bioregion, National Land and Water Resources Audit (NLWRA), Canberra, ACT. Available at: https://www.environment.gov.au/system/files/resources/a8015c25-4aa2-4833-ad9c-e98d09e2ab52/files/bioregion-simpson-strzelecki-dunefields.pdf (accessed 27 September 2016).

Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology 229, 209–220.
How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension?Crossref | GoogleScholarGoogle Scholar | 15207476PubMed |

Benhamou, S., and Bovet, P. (1989). How animals use their environment: a new look at kinesis. Animal Behaviour 38, 375–383.
How animals use their environment: a new look at kinesis.Crossref | GoogleScholarGoogle Scholar |

Berbert, J. M., and Fagan, W. F. (2012). How the interplay between individual spatial memory and landscape persistence can generate population distribution patterns. Ecological Complexity 12, 1–12.
How the interplay between individual spatial memory and landscape persistence can generate population distribution patterns.Crossref | GoogleScholarGoogle Scholar |

Bivand, R., and Lewin-Koh, N. (2016). Maptools: tools for reading and handling spatial objects, R package ver. 0.8-39. Available at: https://CRAN.R-project.org/package=maptools (accessed 27 January 2017).

Bivand, R., and Rundel, C. (2016). Rgeos: Interface to Geometry Engine – Open Source (GEOS), R package ver. 0.3-19. Available at: https://CRAN.R-project.org/package=rgeos (accessed 27 January 2017).

Boardman, W. S. J., Lethbridge, M. R., Hampton, J. O., Smith, I., Woolnough, A. P., McEwen, M., Miller, G. W. J., and Caraguel, C. G. B. (2014). Evaluation of medetomidine-ketamine and medetomidine-ketamine-butorphanol for the field anesthesia of free-raging dromedary camels (Camelus dromediarius) in Australia. Journal of Wildlife Diseases 50, 873–882.
Evaluation of medetomidine-ketamine and medetomidine-ketamine-butorphanol for the field anesthesia of free-raging dromedary camels (Camelus dromediarius) in Australia.Crossref | GoogleScholarGoogle Scholar |

Brim Box, J., Nano, C. E. M., McBurnie, G., Waller, D. M., McConnell, K., Brock, C., Paltridge, R., McGilvray, A., Bubb, A., and Edwards, G. P. (2016). The impact of feral camels (Camelus dromedarius) on woody vegetation in arid Australia. The Rangeland Journal 38, 181–190.
The impact of feral camels (Camelus dromedarius) on woody vegetation in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Bullard, F. (1999). Estimating the home range of an animal: a Brownian bridge approach. Master thesis, The University of North Carolina, Chapel Hill, USA.

Burrough, P. A. (1986). ‘Principles of Geographical Information Systems for Land Resources Assessment.’ (Oxford University Press: Oxford, UK.)

Burt, W. H. (1943). Teritoriality and home range concepts as applied to mammals. Journal of Mammalogy 24, 346–352.
Teritoriality and home range concepts as applied to mammals.Crossref | GoogleScholarGoogle Scholar |

Calenge, C., and Fortmann-Roe, S. (2019). adehabitatHR: Home Range Estimation. R package ver. 0.4.16. Available at: https://CRAN.R-project.org/package=adehabitatHR (accessed 1 May 2019).

Caughley, G. (1977). ‘Analysis of Vertebrate Populations.’ (John Wiley & Sons: Chichester, UK.)

Cochran, W. G. (1977). ‘Sampling Techniques.’ 3rd edn. (Wiley: New York, NY, USA.)

DEWNR (2015). IBRA Region Australia ver. 7.0 – PED, Bioregional Assessment Source Dataset. Available at: http://data.gov.au/dataset/9791362e-bfb3-4d13-8a7a-dd10f25c4d84 (accessed 23 November 2017).

Dingle, H., and Drake, V. A. (2007). What is migration? Bioscience 57, 113–121.
What is migration?Crossref | GoogleScholarGoogle Scholar |

Djordjevic, B., Gudmundsson, J., Pham, A., and Wolle, T. (2011). Detecting regular visit patterns. Algorithmica 60, 829–852.
Detecting regular visit patterns.Crossref | GoogleScholarGoogle Scholar |

Dörges, B., and Heucke, J. (1995). Ecology, Social Organisation and Behaviour of the Feral Dromedary Camelus dromedaries (L. 1758) in Central Australia. Unpublished Report (translated from two PhD theses, submitted 1995), University of Braunshweig, Braunshweig, Germany.

Edwards, G. P., Eldridge, S. R., Wurst, D., Berman, D. M., and Garbin, V. (2001). Movement patterns of female feral camels in central and northern Australia. Wildlife Research 28, 283–289.
Movement patterns of female feral camels in central and northern Australia.Crossref | GoogleScholarGoogle Scholar |

Edwards, G. P., Saalfeld, K., and Clifford, N. (2004). Population trend of feral camels in the Northern Territory, Australia. Wildlife Research 31, 509–517.
Population trend of feral camels in the Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Edwards, G. P., Zeng, B., Saalfeld, W. K., and Vaarzon-Morel, P. (2010). Evaluation of the impacts of feral camels. The Rangeland Journal 32, 43–54.
Evaluation of the impacts of feral camels.Crossref | GoogleScholarGoogle Scholar |

Epps, C. W., Wehausen, J. D., Bleich, V. C., Torres, S. G., and Brashares, J. S. (2007). Optimizing dispersal and corridor models using landscape genetics. Journal of Applied Ecology 44, 714–724.
Optimizing dispersal and corridor models using landscape genetics.Crossref | GoogleScholarGoogle Scholar |

Fischer, J. W., Walter, W. D., and Avery, M. L. (2013). Brownian Bridge Movement Models to characterize birds’ home ranges. The Condor 115, 298–305.
Brownian Bridge Movement Models to characterize birds’ home ranges.Crossref | GoogleScholarGoogle Scholar |

Garriga, J., Palmer, J. R., Oltra, A., and Bartumeus, F. (2016). Expectation-maximization binary clustering for behavioural annotation. PLoS One 11, e0151984.
Expectation-maximization binary clustering for behavioural annotation.Crossref | GoogleScholarGoogle Scholar | 27002631PubMed |

Gauthier-Pilters, H., and Dagg, A. I. (1981). ‘The Camel, Its Evolution, Ecology, Behaviour and Relationship to Man.’ (University of Chicago: Chicago, IL, USA.)

Google Satellite (2020a). Great Victoria Desert – 27.819, 133.179, 1:40000, QGIS:HCMGIS Plugin. Available at: https://www.google.com/earth/index.html (accessed 26 July 2020).

Google Satellite (2020b). Gibson Desert – 23.797, 125.313, 1:40000, QGIS:HCMGIS Plugin. Available at: https://www.google.com/earth/index.html (accessed 26 July 2020).

Google Satellite (2020c). North Simpson Strzelecki Dunefields – 25.105, 136.834, 1:40000, QGIS:HCMGIS Plugin. Available at: https://www.google.com/earth/index.html (accessed 26 July 2020).

Grigg, G. C., Pople, A. R., and Beard, L. A. (1995). Movements of feral camels in central Australia determined by satellite telemetry. Journal of Arid Environments 31, 459–469.
Movements of feral camels in central Australia determined by satellite telemetry.Crossref | GoogleScholarGoogle Scholar |

Gurarie, E., Andrews, R. D., and Laidre, K. L. (2009). A novel method for identifying behavioural changes in animal movement data. Ecology Letters 12, 395–408.
A novel method for identifying behavioural changes in animal movement data.Crossref | GoogleScholarGoogle Scholar | 19379134PubMed |

Hart, Q., and Edwards, G. (2016). Outcomes of the Australian Feral Camel Management Project and the future of feral camel management in Australia. The Rangeland Journal 38, 201–206.
Outcomes of the Australian Feral Camel Management Project and the future of feral camel management in Australia.Crossref | GoogleScholarGoogle Scholar |

Horne, J. S., Garton, E. O., Krone, S. M., and Lewis, J. S. (2007). Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363.
Analyzing animal movements using Brownian bridges.Crossref | GoogleScholarGoogle Scholar | 17918412PubMed |

Johnson, C. J., Parker, K. L., Heard, D. C., and Gillingham, M. P. (2002). Movement parameters of ungulates and scale-specific responses to the environment. Journal of Animal Ecology 71, 225–235.
Movement parameters of ungulates and scale-specific responses to the environment.Crossref | GoogleScholarGoogle Scholar |

Kahle, D., and Wickham, H. (2016). ggmap: Spatial Visualization with ggplot2. R package ver. 2.6.1. Available at: https://CRAN.R-project.org/package=ggmap (accessed 27 January 2017).

Knell, A. S., and Codling, E. A. (2012). Classifying area-restricted search (ARS) using a partial sum approach. Theoretical Ecology 5, 325–339.
Classifying area-restricted search (ARS) using a partial sum approach.Crossref | GoogleScholarGoogle Scholar |

Kranstauber, B., and Smolla, M. (2016). move: Visualizing and Analyzing Animal Track Data. R package ver. 1.6.541. Available at: https://CRAN.R-project.org/package=move (accessed 27 January 2017).

Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M., and Safi, K. (2012). A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. Journal of Animal Ecology 81, 738–746.
A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement.Crossref | GoogleScholarGoogle Scholar | 22348740PubMed |

Lee, C., Colditz, I. G., and Campbell, D. L. M. (2018). A framework to assess the impact of new animal management technologies on welfare: a case study of virtual fencing. Frontiers in Veterinary Science 5, 187.
A framework to assess the impact of new animal management technologies on welfare: a case study of virtual fencing.Crossref | GoogleScholarGoogle Scholar | 30186841PubMed |

Lethbridge, M. R. (2016a). Insights into feral goat movement in Australia using dynamic Brownian Bridges for movement analysis. The Rangeland Journal 38, 343–359.
Insights into feral goat movement in Australia using dynamic Brownian Bridges for movement analysis.Crossref | GoogleScholarGoogle Scholar |

Lethbridge, M. R. (2016b). Find Gap, Partitioning Software, unpublished.

Lethbridge, M. R., and Pitt, J. (2009). 2009 Camel Survey in the Alinytara Wilurara NRM Board Region. Terrestrial Ecosystem Services Report to Alinytara Wilurara NRM Board.

Lethbridge, M. R., Anderson, N., Harper, M., and Gee, P. (2010). Movements and landscape use of camels in central Australia revealed by GPS satellite. The Rangeland Journal 32, 33–41.
Movements and landscape use of camels in central Australia revealed by GPS satellite.Crossref | GoogleScholarGoogle Scholar |

Lethbridge, M. R., Saalfeld, K. W., and Edwards, G. P. (2016). Measured reductions in the density of camels under the Australian Feral Camel Management Project. The Rangeland Journal 38, 173–179.
Measured reductions in the density of camels under the Australian Feral Camel Management Project.Crossref | GoogleScholarGoogle Scholar |

Lewis, J. S., Rachlow, J. L., Horne, J. S., Garton, E. O., Wakkinen, W. L., Hayden, J. A., and Zager, P. (2011). Identifying habitat characteristics to predict highway crossing areas for black bears within a human-modified landscape. Landscape and Urban Planning 101, 99–107.
Identifying habitat characteristics to predict highway crossing areas for black bears within a human-modified landscape.Crossref | GoogleScholarGoogle Scholar |

Mabry, K. E., and Pinter-Wollman, N. (2010). Spatial orientation and time: methods. In: ‘Encyclopedia of Animal Behaviour. Vol. 3’. (Eds M. D. Breed and J. Moore.) pp. 308–314. (Academic Press: Oxford, UK.)

Matson, G. (2012). ‘Cementum age report (Camelus dromedarius). Report to EcoKnowledge.’ (Matson’s Laboratory: Milltown, Montana, USA.)

McBurnie, G., Davis, J., Thompson, R. M., Nano, C., and Brim Box, J. (2015). The impacts of an invasive herbivore (Camelus dromedaries) on arid zone freshwater pools: an experimental investigation of the effects of dung on macroinvertebrate colonisation. Journal of Arid Environments 113, 69–76.
The impacts of an invasive herbivore (Camelus dromedaries) on arid zone freshwater pools: an experimental investigation of the effects of dung on macroinvertebrate colonisation.Crossref | GoogleScholarGoogle Scholar |

McCallum, H. (2000). ‘Population Parameters: Estimation for Ecological Models.’ (Blackwell Science Pty Ltd: Carlton, Vic., Australia.)

McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B. J., and Morales, J. M. (2012). A general discrete-time modeling framework for animal movement using multistate random walks. Ecological Monographs 82, 335–349.
A general discrete-time modeling framework for animal movement using multistate random walks.Crossref | GoogleScholarGoogle Scholar |

McLeod, R. (2004). ‘Counting the Cost: Impact of Invasive Species in Australia, 2004.’ (Cooperative Research Centre for Pest Animal Control: Canberra, ACT, Australia.)

McRae, B. H., Dickson, B. G., Keitt, T. H., and Shah, V. B. (2008). Using circuit theory to model connectivity in ecology evolution, and conservation. Ecology 89, 2712–2724.
Using circuit theory to model connectivity in ecology evolution, and conservation.Crossref | GoogleScholarGoogle Scholar | 18959309PubMed |

Mueller, T., and Fagan, W. F. (2008). Search and navigation in dynamic environments - from individual behaviors to population distributions. Oikos 117, 654–664.
Search and navigation in dynamic environments - from individual behaviors to population distributions.Crossref | GoogleScholarGoogle Scholar |

Páez, A. (2004). Anisotropic variance functions in geographically weighted regression models. Geographical Analysis 36, 299–314.
Anisotropic variance functions in geographically weighted regression models.Crossref | GoogleScholarGoogle Scholar |

Pebesma, E. J., and Bivand, R. S. (2005). sp: Classes and Methods for Spatial Data. R package ver. 1.2-7. Available at: https://CRAN.R-project.org/package=sp (accessed 27 January 2017).

Polansky, L., Kilian, W., and Wittemyer, G. (2015). Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state – space models. Proceedings of the Royal Society B. Biological Sciences 282, 20142041.
Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state – space models.Crossref | GoogleScholarGoogle Scholar |

Pople, A. R., and McLeod, S. R. (2010). Demography of feral camels in central Australia and its relevance to population control. The Rangeland Journal 32, 11–19.
Demography of feral camels in central Australia and its relevance to population control.Crossref | GoogleScholarGoogle Scholar |

Powell, R. A. (2000). Animal home ranges and territories and home range estimators. In: ‘Research Techniques in Animal Ecology’. 2nd edn. pp. 65–110. (Columbia University Press: New York, USA.)

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria, Vienna. Available at: https://www.R-project.org/ (accessed 27 January 2017).

Saalfeld, W. K., and Edwards, G. P. (2008) ‘Ecology of Feral Camels in Australia.’ (Desert Knowledge Cooperative Research Centre: Alice Springs, NT, Australia.)

Sawyer, H., Kauffman, M. J., Nielson, R. M., and Horne, J. S. (2009). Identifying and prioritizing ungulate migration routes for landscape level conservation. Ecological Applications 19, 2016–2025.
Identifying and prioritizing ungulate migration routes for landscape level conservation.Crossref | GoogleScholarGoogle Scholar | 20014575PubMed |

Schick, R. S., Loarie, S. R., Colchero, F., Best, B. D., Boustany, A., Conde, D. A., Halpin, P. N., Joppa, L. N., McClellan, C. M., and Clark, J. S. (2008). Understanding movement data and movement processes: current and emerging directions. Ecology Letters 11, 1338–1350.
Understanding movement data and movement processes: current and emerging directions.Crossref | GoogleScholarGoogle Scholar | 19046362PubMed |

Schnute, J. T., Boers, N., and Haigh, R. (2015). PBSmapping: Mapping Fisheries Data and Spatial Analysis Tools. R package ver. 2.69.76. Available at: https://CRAN.R-project.org/package=PBSmapping (accessed 27 January 2017).

Shephard, M. (1992). ‘The Simpson Desert: Natural History and Human Endeavour. Royal Geographical Society of Australasia South Australian Branch.’ (Giles Publications: Adelaide, SA, Australia.)

Spencer, P. B. S., Giustiniano, D., Hampton, J. O., Gee, P., Burows, N., Rose, K., Martin, G. R., and Woolnough, A. P. (2012). Identification and management of a single large population of wild dromedary camels. Journal of Wildlife Management 76, 1254–1263.
Identification and management of a single large population of wild dromedary camels.Crossref | GoogleScholarGoogle Scholar |

Spencer, P. B. S., Hampton, J. O., Pacioni, C., Kennedy, M. S., Saalfeld, K., Rose, K., and Woolnough, A. P. (2015). Genetic relationships within social groups influence the application of the Judas technique: A case study with wild dromedary camels. The Journal of Wildlife Management 79, 102–111.
Genetic relationships within social groups influence the application of the Judas technique: A case study with wild dromedary camels.Crossref | GoogleScholarGoogle Scholar |

Thackway, R., and Cresswell, I. D. (Eds) (1995). ‘An Interim Biogeographic Regionalisation for Australia: A Framework for Establishing the National System of Reserves, ver. 4.0.’ (Australian Nature Conservation Agency: Canberra, ACT, Australia.)

Waddell, P. A., Gardner, A. K., and Hennig, P. (2010). An inventory and condition survey of the Western Australian part of the Nullarbor Region. Department of Agriculture and Food, Western Australia, Technical Bulletin 97, p. 413.

Wand, M. P., and Jones, M. C. (1993). Comparison of smoothing parameterizations in bivariate kernel density estimation. Journal of the American Statistical Association 88, 520–528.
Comparison of smoothing parameterizations in bivariate kernel density estimation.Crossref | GoogleScholarGoogle Scholar |