Soil carbon stocks of semi-arid grasslands in northern Mexico
Pedro Jurado-Guerra A , Ruben Saucedo-Terán A , Carlos Morales-Nieto B , Martín Juárez-Morales B , Gabriel Sosa-Pérez A and Alan Álvarez-Holguín A CA Campo Experimental La Campana, CIRNOC-INIFAP, Km 33 Carretera Chihuahua-Ojinaga, Aldama, Chihuahua 32910, México.
B Departamento de Recursos Naturales, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31031, México.
C Corresponding author. Email: alvarez.alan@inifap.gob.mx
The Rangeland Journal 43(4) 247-255 https://doi.org/10.1071/RJ21021
Submitted: 4 April 2021 Accepted: 8 September 2021 Published: 20 November 2021
Abstract
Soil organic carbon (SOC) is important, but research on SOC in Mexican semi-arid grasslands is limited. The objective of this research was to estimate SOC and develop an ecological model to predict soil carbon stocks (SCS) in the semi-arid grasslands of northern Mexico. Sites with different plant cover were selected along the Central Valleys region, and soil samples collected at two microsites (bare soil and beneath grass) at two depths (0–15 cm and 15–30 cm) and analysed for SOC. Plant cover, precipitation, temperature, soil texture and elevation were included as predictor variables to create a SCS prediction model through correlation and regression analyses. SOC varied from 0.465% ± 0.04 (mean ± s.e.m.) in low plant cover–sandy loam soil–low rainfall grasslands to 2.77% ± 0.29 in high plant cover–clay loam soil–high rainfall grasslands. The SOC was higher under grass than bare soil at all sites, while most sites showed similar SOC across soil depth. The prediction model integrated plant cover, mean annual precipitation, elevation and soil sand content (P < 0.0001) as explanatory variables, and reasonably predicted SCS (R2 = 0.798) in semi-arid grasslands of northern Mexico. Our model can be used in grasslands with similar vegetation, climate and soil in northern Mexico, although extrapolation requires caution since further validation at different sites is required.
Keywords: forage grass cover, semi-arid rangelands, soil carbon model, soil organic matter.
References
Ardö, J., and Olsson, L. (2003). Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. Journal of Arid Environments 54, 633–651.| Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model.Crossref | GoogleScholarGoogle Scholar |
Bird, S. B., Herrick, J. E., Wander, M. M., and Wright, S. F. (2002). Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environmental Pollution 116, 445–455.
| Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland.Crossref | GoogleScholarGoogle Scholar | 11822724PubMed |
Briske, D. D., and Richards, J. H. (1995). Plant responses to defoliation: A physiological, morphological and demographic evaluation. In: ‘Physiological Ecology and Developmental Morphology’. (Eds D. J. Bedunah and R. E. Sosebee.) pp. 635–710. (Society for Range Management: Denver, CO, USA.)
Brown, J. B., and Thorpe, J. (2008). Climate change and rangelands: responding rationally to uncertainty. Rangelands 30, 3–6.
| Climate change and rangelands: responding rationally to uncertainty.Crossref | GoogleScholarGoogle Scholar |
Brown, J., Angerer, J., Salley, S. W., Blaisdell, R., and Stuth, J. W. (2010). Improving estimates of rangeland carbon sequestration potential in the US southwest. Rangeland Ecology and Management 63, 147–154.
| Improving estimates of rangeland carbon sequestration potential in the US southwest.Crossref | GoogleScholarGoogle Scholar |
Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K., and Schimel, D. S. (1989). Texture, climate, and cultivation effects on soil organic matter content in the U.S. grassland soils. Soil Science Society of America Journal 53, 800–805.
| Texture, climate, and cultivation effects on soil organic matter content in the U.S. grassland soils.Crossref | GoogleScholarGoogle Scholar |
Burke, I. C., Schimel, D. S., Yonker, C. M., Parton, W. J., Joyce, L. A., and Lauenroth, W. K. (1990). Regional modeling of grassland biogeochemistry using GIS. Landscape Ecology 4, 45–54.
| Regional modeling of grassland biogeochemistry using GIS.Crossref | GoogleScholarGoogle Scholar |
Burke, I. C., Lauenroth, W. K., Riggle, R., Brannen, P., Madigan, B., and Beard, S. (1999). Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2, 422–438.
| Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns.Crossref | GoogleScholarGoogle Scholar |
Butler, J. L., and Briske, D. D. (1988). Population structure and tiller demography of the bunchgrass Schizachyrium scoparium in response to herbivory. Oikos 51, 306–312.
| Population structure and tiller demography of the bunchgrass Schizachyrium scoparium in response to herbivory.Crossref | GoogleScholarGoogle Scholar |
CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2016). Cobertura del suelo de México, 2011, a 250 metros. Available at: http://www.conabio.gob.mx/informacion/gis/ (accessed 15 January 2021).
CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2020). Cartografía digital del suelo: propiedades del suelo. Available at: http://www.conabio.gob.mx/informacion/gis/ (accessed 10 January 2021).
Conant, R. T., and Paustian, K. (2002a). Potential soil carbon sequestration in overgrazed grassland ecosystems. Global Biogeochemical Cycles 16, 1143.
| Potential soil carbon sequestration in overgrazed grassland ecosystems.Crossref | GoogleScholarGoogle Scholar |
Conant, R. T., and Paustian, K. (2002b). Spatial variability of soil organic carbon in grasslands: implications for detecting change at different scales. Environmental Pollution 116, S127–S135.
| Spatial variability of soil organic carbon in grasslands: implications for detecting change at different scales.Crossref | GoogleScholarGoogle Scholar | 11833900PubMed |
Conant, R. T., Cerri, C. E. P., Osborne, B. B., and Paustian, K. (2017). Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications 27, 662–668.
| Grassland management impacts on soil carbon stocks: a new synthesis.Crossref | GoogleScholarGoogle Scholar | 27875004PubMed |
Cook, C. W., and Stubbendieck, J. (1986). ‘Range research: Basic Problems and Techniques.’ (Society for Range Management: Denver, CO, USA.)
Dass, P., Houlton, B. Z., Wang, Y., and Warlind, D. (2018). Grasslands may be more reliable carbon sinks than forests in California. Environmental Research Letters 13, 074027.
| Grasslands may be more reliable carbon sinks than forests in California.Crossref | GoogleScholarGoogle Scholar |
Delgado-Balbuena, J., Arredondo, J. T., Loescher, H. W., Huber-Sannwald, E., Chavez-Aguilar, G., Luna-Luna, M., and Barretero-Hernandez, R. (2013). Differences in plant cover and species composition of semiarid grassland communities of central Mexico and its effects on net ecosystem exchange. Biogeosciences 10, 4673–4690.
| Differences in plant cover and species composition of semiarid grassland communities of central Mexico and its effects on net ecosystem exchange.Crossref | GoogleScholarGoogle Scholar |
Delgado-Balbuena, J., Arredondo, J. T., Loescher, H. W., Pineda-Martinez, L. F., Carbajal, J. N., and Vargas, R. (2019). Seasonal precipitation legacy effects determine carbon balance of a semiarid grassland. Journal of Geophysical Research. Biogeosciences 124, .
| Seasonal precipitation legacy effects determine carbon balance of a semiarid grassland.Crossref | GoogleScholarGoogle Scholar |
Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J., and Loucks, C. J. (2014). Distribution mapping of world grassland types. Journal of Biogeography 41, 2003–2019.
| Distribution mapping of world grassland types.Crossref | GoogleScholarGoogle Scholar |
FAO (Food and Agriculture Organization) (2005). Introduction. In: ‘Grasslands of the World’. (Eds J. M. Suttie, S. G. Reynolds, and C. Batello.) pp. 1–18. (FAO: Rome, Italy.)
Follett, R. F., Kimble, J. M., and Lal, R. (2001). The potential of U.S. grazing lands to sequester soil carbon. In: ‘The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect’. (Eds R. F. Follett, J. M. Kimble and R. Lal.) pp. 390–419. (CRC/Lewis Publishers: Boca Raton, FL, USA.)
Frank, A. B., Tanaka, D. L., Hofmann, L., and Follett, R. F. (1995). Soil carbon and nitrogen of northern Great Plains grasslands as influenced by long-term grazing. Journal of Range Management 48, 470–474.
| Soil carbon and nitrogen of northern Great Plains grasslands as influenced by long-term grazing.Crossref | GoogleScholarGoogle Scholar |
Garcia-Pausas, J., Casals, P., Camarero, L., Huguet, C., Sebastia, M. T., Thompson, R., and Romanya, J. (2007). Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biochemistry 82, 279–289.
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., and Tempio, G. (2013). ‘Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities.’ (Food and Agriculture Organization of the United Nations (FAO): Rome, Italy.)
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18–27.
| Google Earth Engine: planetary-scale geospatial analysis for everyone.Crossref | GoogleScholarGoogle Scholar |
Herrick, J. E., Van Zee, J. W., Havstad, K. M., Burket, L. M., and Wilford, W. G. (2005). ‘Monitoring Manual for Grassland, Shrubland and Savanna Ecosystems. Volume I: Quick Start.’ (USDA-ARS Jornada Experimental Range: Las Cruces, NM, USA.)
INEGI (Instituto Nacional de Estadistica y Geografía) (2010). Prontuario de informacion geográfica municipal. Available at: http://www3.inegi.org.mx/mexicocifras/datos_geograficos/chihuahua/satevo/casasgrandes/ahumada/matamoros (accessed 10 July 2015).
INEGI (Instituto Nacional de Estadística y Geografía) (2013). Continuo de Elevaciones Mexicano 3.0 (CEM 3.0). Available at: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed 20 December 2020).
Jones, M. B. (2010). Potential for carbon sequestration in temperate grassland soils. In: ‘Grassland Carbon Sequestration: Management, Policy and Economics. Proceedings of the Workshop on the Role of Grassland Carbon Sequestration in the Mitigation of Climate Change’. Rome, 2009. pp. 1–18. (FAO: Rome, Italy.)
Karger, D. N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, P., and Kessler, M. (2017). Climatologies at high resolution for the Earth land surface areas. Scientific Data 4, 170122.
| Climatologies at high resolution for the Earth land surface areas.Crossref | GoogleScholarGoogle Scholar | 28872642PubMed |
Kirk, R. E. (1982). ‘Experimental Design: Procedures for the Behavioral Sciences.’ (Brooks/Cole Publishing Co.: Belmont, CA, USA.)
Laca, E. A., McEachern, M. B., and Demment, M. W. (2010). Global grazinglands and greenhouse gas fluxes. Rangeland Ecology and Management 63, 1–3.
| Global grazinglands and greenhouse gas fluxes.Crossref | GoogleScholarGoogle Scholar |
Levene, H. (1960). Robust tests for equality of variances. In: ‘Contributions to probability and statistics: essays in honor of Harold Hotelling’. (Eds S. G. Olkin, W. Ghurye, W. Hoeffding, G. Madow, and H. B. Mann.) pp. 278–292. (Stanford University Press: Redwood City, CA, USA.)
Lin, H., Wheeler, D., Bell, J., and Wilding, L. (2005). Assessment of soil spatial variability at multiple scales. Ecological Modelling 182, 271–290.
| Assessment of soil spatial variability at multiple scales.Crossref | GoogleScholarGoogle Scholar |
MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B., and Steinfeld, H. (2013). ‘Greenhouse Gas Emissions from Pig and Chicken Supply Chains – A global Life Cycle Assessment.’ (FAO: Rome, Italy.)
Manning, P., de Vries, F. T., Tallowin, J. R. B., Smith, R., Mortimer, S. R., Pilgrim, E. S., Harrison, K. A., Wright, D. G., Quirk, H., Benson, J., Shipley, B., Cornelissen, J. H. C., Kattge, J., Bonisch, G., Wirth, C., and Bardgett, R. D. (2015). Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. Journal of Applied Ecology 52, 1188–1196.
| Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks.Crossref | GoogleScholarGoogle Scholar |
Medina-Roldán, E., Arredondo, J. T., Huber-Sannwald, E., Chapa-Vargas, L., and Olalde-Portugal, V. (2008). Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in central Mexico. Journal of Arid Environments 72, 546–556.
| Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in central Mexico.Crossref | GoogleScholarGoogle Scholar |
Montaño, N. M., Ayala, F., Bullock, S. H., Briones, O., García-Oliva, F., García-Sánchez, R., Maya, Y., Perroni, Y., Siebe, C., Tapia-Torres, Y., Troyo, E., and Yepez, E. (2016). Almacenes y flujos de carbono en ecosistemas aridos y semiáridos de México: Síntesis y Perspectivas. Terra Latinoamericana 34, 39–59.
Nelson, D. W., and Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: ‘Methods of Soil Analysis, Part 1. Agronomy Monograph No. 9’. (Eds A. L. Page, R. H. Miller, and D. R. Keeney.) (American Society of Agronomy: Madison, WI, USA.)
Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). ‘Applied Linear Regression Models.’ (Irwin: Chicago, IL, USA.)
Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51, 1173–1179.
| Analysis of factors controlling soil organic matter levels in Great Plains grasslands.Crossref | GoogleScholarGoogle Scholar |
Paterson, S., Minasny, B., and McBratney, A. (2018). Spatial variability of Australian soil texture: A multiscale analysis. Geoderma 309, 60–74.
| Spatial variability of Australian soil texture: A multiscale analysis.Crossref | GoogleScholarGoogle Scholar |
Paz-Pellat, F., Argumedo, E. J., Cruz, G. C., Etchevers, B. J., and de Jong, B. (2016). Distribución espacial y temporal del carbono orgánico del suelo en los ecosistemas terrestres de México. Terra Latinoamericana 34, 289–310.
Petri, M., Batello, C., Villani, R., and Nachtergaele, F. (2010). Potential for carbon sequestration in temperate grassland soils. In: ‘Grassland Carbon Sequestration: Management, Policy and Economics’. (Eds M. Abberton, R. Conant, and C. Batello.) pp. 19–32. (Food and Agriculture Organization: Rome, Italy.)
QGIS Development Team (2020). QGIS Geographic Information System v. 3.16. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org (accessed 10 February 2021).
Reeder, J. D., and Schuman, G. E. (2002). Influence of livestock grazing on C sequestration in semiarid mixed-grass and short-grass rangelands. Environmental Pollution 116, 457–463.
| Influence of livestock grazing on C sequestration in semiarid mixed-grass and short-grass rangelands.Crossref | GoogleScholarGoogle Scholar | 11822725PubMed |
Sanderson, J. S., Beutler, C., Brown, J. R., Burke, I. C., Chapman, T., Conant, R. T., Derner, J. D., et al. (2020). Cattle, conservation, and carbon in the western Great Plains. Journal of Soil and Water Conservation 75, 5A–12A.
| Cattle, conservation, and carbon in the western Great Plains.Crossref | GoogleScholarGoogle Scholar |
SAS Institute (2011). ‘SAS Ver. 9.3 User’s Guide.’ (SAS Institute, Inc.: Cary, NC, USA.)
Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., and Manley, W. A. (1999). Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications 9, 65–71.
| Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland.Crossref | GoogleScholarGoogle Scholar |
Schuster, J. L. (1964). Root development of native plants under three grazing intensities. Ecology 45, 63–70.
| Root development of native plants under three grazing intensities.Crossref | GoogleScholarGoogle Scholar |
Segoli, M., Bray, S., Allen, D., Dalal, R., Watson, I., Ash, A., and O’reagain, P. (2015). Managing cattle grazing intensity: effects on soil organic matter and soil nitrogen. Soil Research 53, 677–682.
| Managing cattle grazing intensity: effects on soil organic matter and soil nitrogen.Crossref | GoogleScholarGoogle Scholar |
Segura-Castruita, M. A., Sanchez-Guzman, P., Ortiz-Solorio, C. A., and Gutierrez-Castorena, M. C. (2005). Carbono organico de los suelos de Mexico. Terra Latinoamericana 23, 21–28.
SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales) (2016). Ecosistemas terrestres. In ‘Informe de la situación del medio ambiente en México 2015’. Available at: https://apps1.semarnat.gob.mx:8443/dgeia/informe15/tema/pdf/Informe15_completo.pdf (accessed 15 September 2020).
Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591–611.
| An analysis of variance test for normality (complete samples).Crossref | GoogleScholarGoogle Scholar |
Yan, R., Xin, X., Yan, Y., Wang, X., Zhang, B., Yang, G., Liu, S., Deng, Y., and Li, L. (2015). Impacts of differing grazing rates on canopy structure and species composition in Hulunber meadow steppe. Rangeland Ecology and Management 68, 54–64.
| Impacts of differing grazing rates on canopy structure and species composition in Hulunber meadow steppe.Crossref | GoogleScholarGoogle Scholar |