Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
REVIEW

Arid awakening: new opportunities for Australian plant natural product research

B. S. Simpson A C E , V. Bulone B , S. J. Semple C , G. W. Booker D , R. A. McKinnon A C and P. Weinstein D
+ Author Affiliations
- Author Affiliations

A Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA 5042, Australia.

B ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.

C School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.

D School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia.

E Corresponding author. Email: bradley.simpson@flinders.edu.au

The Rangeland Journal 38(5) 467-478 https://doi.org/10.1071/RJ16004
Submitted: 13 January 2016  Accepted: 13 August 2016   Published: 9 September 2016

Abstract

The importance of plants and other natural reserves as sources for biologically important compounds, particularly for application in food and medicine, is undeniable. Herein we provide a historical context of the major scientific research programs conducted in Australia that have been aimed at discovering novel bioactive natural products from terrestrial plants. Generally speaking, the main approaches used to guide the discovery of novel bioactive compounds from natural resources have included random, ethnobotanical and chemotaxonomic strategies. Previous Australian plant natural product research campaigns appear to have lacked the use of a fourth strategy with equally high potential, namely the ecologically guided approach. In addition, many large studies have sampled plant material predominantly from tropical regions of Australia, even though arid and semi-arid zones make up 70% of mainland Australia. Therefore, plants growing in arid zone environments, which are exposed to different external stressors (e.g. low rainfall, high ultraviolet exposure) compared with tropical flora, remain an untapped reservoir of potentially novel bioactive compounds. Research of Australian arid zone plants that is ecologically guided creates a new opportunity for the discovery of novel bioactive compounds from plants (and potentially other biota) for application in health care, food and agricultural industries.

Additional keywords: agriculture, commercialisation, ecology, food, Indigenous, pharmaceutical.


References

Agnew, T., Leach, M., Fau-Segal, L., and Segal, L. (2014). The clinical impact and cost-effectiveness of essential oils and aromatherapy for the treatment of acne vulgaris: a protocol for a randomized controlled trial. Journal of Alternative and Complementary Medicine 20, 399–405.
The clinical impact and cost-effectiveness of essential oils and aromatherapy for the treatment of acne vulgaris: a protocol for a randomized controlled trial.Crossref | GoogleScholarGoogle Scholar | 23829810PubMed |

Ahuja, I., Kissen, R., and Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science 17, 73–90.
Phytoalexins in defense against pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFOmu7k%3D&md5=5fc42d61b0144ef80c66b06fbf9a0b77CAS | 22209038PubMed |

Akula, R., and Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6, 1720–1731.
Influence of abiotic stress signals on secondary metabolites in plants.Crossref | GoogleScholarGoogle Scholar |

Australian Bureau of Agricultural and Resource Economics and Sciences (2014). ‘Agricultural Commodity Statistics 2014.’ (Australian Government: Canberra, ACT.)

Australian Institute of Health and Welfare and Australasian Association of Cancer Registries (2014) ‘Cancer in Australia: in Brief 2014.’ Cancer Series no. 91. Catalogue no. CAN 89. (Australian Government: Canberra, ACT.)

Baker, R., and Smith, H. (1920). ‘A Research on the Eucalyptus, Especially in Regard to Their Essential Oils.’ 2nd edn. (NSW Government Printer: Sydney, NSW.)

Balunas, M. J., and Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life Sciences 78, 431–441.
Drug discovery from medicinal plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ejsrbP&md5=e2c42e9c8af2f952e81b737061990efdCAS | 16198377PubMed |

Barbosa, W. L. R., do Nascimento, M. S., do Nascimento Pinto, L., Maia, F. L. C., Sousa, A. J. A., Silva Júnior, J. O. C., Monteiro, M. C. M., and Ribeiro de Oliveira, D. (2012). Selecting medicinal plants for development of phytomedicine and use in primary health care, bioactive compounds in phytomedicine. Available at: www.intechopen.com/books/bioactive-compounds-in-phytomedicine/selecting-medicinal-plants-for-development-of-phytomedicine-and-use-in-primaryhealth-care (accessed 21 April 2016).

Binder, B. Y. K., Peebles, C. A. M., Shanks, J. V., and San, K.-Y. (2009). The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnology Progress 25, 861–865.
The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlWltL8%3D&md5=0db656aadc85e79c154a44e235a894f8CAS |

Boucher, H. W., Talbot, G. H., Benjamin, D. K., Bradley, J., Guidos, R. J., Jones, R. N., Murray, B. E., Bonomo, R. A., and Gilbert, D. (2013). 10 × ’20 Progress—Development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clinical Infectious Diseases 56, 1685–1694.
10 × ’20 Progress—Development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America.Crossref | GoogleScholarGoogle Scholar | 23599308PubMed |

Bourgaud, F., Gravot, A., Milesi, S., and Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant Science 161, 839–851.
Production of plant secondary metabolites: a historical perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Siurw%3D&md5=d52672b34275151a9c2f9579a7f90e31CAS |

Boyle, G. M., D’Souza, M. M. A., Pierce, C. J., Adams, R. A., Cantor, A. S., Johns, J. P., Maslovskaya, L., Gordon, V. A., Reddell, P. W., and Parsons, P. G. (2014). Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumors in mouse models. PLoS One 9, e108887.
Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumors in mouse models.Crossref | GoogleScholarGoogle Scholar | 25272271PubMed |

Brouwer, N., Liu, Q., Harrington, D., Kohen, S., Vemulpad, S., Jamie, J., Randall, M., and Randall, D. (2005). An ethnopharmacological study of medicinal plants in New South Wales. Molecules 10, 1252–1262.
An ethnopharmacological study of medicinal plants in New South Wales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WmsrnO&md5=79339c77babe108f9e211ed331f4acf8CAS | 18007517PubMed |

Burbidge, N. (1960). The Australian species of Nicotiana L. (Solanaceae). Australian Journal of Botany 8, 342–380.
The Australian species of Nicotiana L. (Solanaceae).Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2015). Average annual rainfall in Australia map. Available at: www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp (accessed 24 November 2015).

Burkhard, P. R., Burkhardt, K., Haenggeli, C.-A., and Landis, T. (1999). Plant-induced seizures: reappearance of an old problem. Journal of Neurology 246, 667–670.
Plant-induced seizures: reappearance of an old problem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzovFygsA%3D%3D&md5=8bc7ac8edf56ae0f8b364d0a3611a9fcCAS | 10460442PubMed |

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K. H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=b216caabc2324f71059ef2d0b1d4c549CAS | 18761619PubMed |

Campbell, D. (2011). Application of an integrated multidisciplinary economic welfare approach to improved wellbeing through Aboriginal caring for country. The Rangeland Journal 33, 365–372.
Application of an integrated multidisciplinary economic welfare approach to improved wellbeing through Aboriginal caring for country.Crossref | GoogleScholarGoogle Scholar |

Campbell, J., Miller, J., Blum, A., Toole, S., Ayerbe, J., Verning, M., Poulos, C., Boyle, G., Parsons, P., Moses, R., Steadman, R., Moseley, R., Schmidt, P., Gordon, V., and Reddell, P. (2014). 24th Annual Meeting of the European Tissue Repair Society. Wound Repair and Regeneration 22, A73–A100.
24th Annual Meeting of the European Tissue Repair Society.Crossref | GoogleScholarGoogle Scholar |

Carson, C. F., and Riley, T. V. (1995). Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. The Journal of Applied Bacteriology 78, 264–269.
Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVCqtbk%3D&md5=7a3035251549289da00a112538f5ab52CAS | 7730203PubMed |

Carson, C. F., Hammer, K. A., and Riley, T. V. (2006). Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews 19, 50–62.
Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFGjtb4%3D&md5=fe5807f095f9579e20c8db7b6db2432fCAS | 16418522PubMed |

Claudie, D. J., Semple, S. J., Smith, N. M., and Simpson, B. S. (2012) Ancient but new. Developing locally-driven enterprises based on traditional medicines in ‘Kuuku I’yu’ (Northern Kaanju homelands, Cape York, Queensland, Australia). In ‘Indigenous Peoples’ Innovation: IP Pathways to Development’. (Eds P. Drahos and S. Frankel.) pp. 29–66. (ANU ePress: Canberra, ACT.)

Coley, P. D., Heller, M. V., Aizprua, R., Araúz, B., Flores, N., Correa, M., Gupta, M., Solis, P. N., Ortega-Barría, E., Romero, L. I., Gómez, B., Ramos, M., Cubilla-Rios, L., Capson, T. L., and Kursar, T. A. (2003). Using ecological criteria to design plant collection strategies for drug discovery. Frontiers in Ecology and the Environment 1, 421–428.
Using ecological criteria to design plant collection strategies for drug discovery.Crossref | GoogleScholarGoogle Scholar |

Collins, D. J., Culvenor, C. C. J., Lamberton, J. A., Loder, J. W., and Prices, J. R. (1990). ‘Plants for Medicines: A Chemical and Pharmacological Survey of Plants in the Australian Region.’ (CSIRO Publishing: Melbourne, Vic.)

Convention on Biological Diversity (2011). ‘Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising From Their Utilization to the Convention on Biological Diversity.’ (Secretariat of the Convention on Biological Diversity: Montreal, Quebec, Canada.)

Cooper, M. A., and Shlaes, D. (2011). Fix the antibiotics pipeline. Nature 472, 32.
Fix the antibiotics pipeline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVCrtrw%3D&md5=5b303cf6f5c9fb1b5411373d925561e1CAS | 21475175PubMed |

Cordell, G. A. (2000). Biodiversity and drug discovery: a symbiotic relationship. Phytochemistry 55, 463–480.
Biodiversity and drug discovery: a symbiotic relationship.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFentrc%3D&md5=2addf0c96268380b9c19aa38126286e9CAS | 11130658PubMed |

Cordell, G. A., Beecher, C. W. W., and Pezzuto, J. M. (1991). Can ethnopharmacology contribute to the development of new anticancer drugs? Journal of Ethnopharmacology 32, 117–133.
Can ethnopharmacology contribute to the development of new anticancer drugs?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlt1Kiu7k%3D&md5=c3a82273328be56e8c315ddcc35aefa3CAS | 1881151PubMed |

Crisp, M. D., Laffan, S., Linder, H. P., and Monro, A. (2001). Endemism in the Australian flora. Journal of Biogeography 28, 183–198.
Endemism in the Australian flora.Crossref | GoogleScholarGoogle Scholar |

David, B., and Ausseil, F. (2006). High-throughput screening of plant chemodiversity. In ‘Encyclopedia of Analytical Chemistry’. (Ed. R. A. Meyers.) pp. 1–24. (Wiley: Hoboken, NJ.)

Decosterd, L. A., Parsons, I. C., Gustafson, K. R., Cardellina, J. H., McMahon, J. B., Cragg, G. M., Murata, Y., Pannell, L. K., and Steiner, J. R. (1993). HIV inhibitory natural products. 11. Structure, absolute stereochemistry, and synthesis of conocurvone, a potent, novel HIV-inhibitory naphthoquinone trimer from a Conospermum sp. Journal of the American Chemical Society 115, 6673–6679.
HIV inhibitory natural products. 11. Structure, absolute stereochemistry, and synthesis of conocurvone, a potent, novel HIV-inhibitory naphthoquinone trimer from a Conospermum sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlGlsL0%3D&md5=c5630d70addbf5af729f84a34c3a33a5CAS |

Department of Agriculture, Fisheries and Forestry (DAFF) (2012). ‘National Food Plan: Green Paper 2012.’ (DAFF: Canberra, ACT.)

Donaldson, J., and Cates, R. (2004). Screening for anticancer agents from Sonoran Desert plants: a chemical ecology approach. Pharmaceutical Biology 42, 478–487.
Screening for anticancer agents from Sonoran Desert plants: a chemical ecology approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1KitQ%3D%3D&md5=97437fe3edb9809e1c224d09159455f6CAS |

Drahos, P. (2014). ‘Intellectual Property, Indigenous People and Their Knowledge.’ (Cambridge University Press: Cambridge, UK.)

Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytotherapy Research 21, 308–323.
Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvF2nsLk%3D&md5=27e6d2ecc51353b811330767a05734f8CAS | 17199238PubMed |

Fabricant, D. S., and Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives 109, 69–75.
The value of plants used in traditional medicine for drug discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlKhtLs%3D&md5=73312d206bfe11cfe69891dbcf97fa1bCAS | 11250806PubMed |

Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., and Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194.
Emerging fungal threats to animal, plant and ecosystem health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVeqtb4%3D&md5=631b580ec3c00ff93cdf31ac8751e478CAS | 22498624PubMed |

Ganesan, A. (2008). The impact of natural products upon modern drug discovery. Current Opinion in Chemical Biology 12, 306–317.
The impact of natural products upon modern drug discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1ersrk%3D&md5=000455625d9cdc80cfd00cd5e0de4242CAS | 18423384PubMed |

Gangl, D., Zedler, J. A. Z., Rajakumar, P. D., Martinez, E. M. R., Riseley, A., Włodarczyk, A., Purton, S., Sakuragi, Y., Howe, C. J., Jensen, P. E., and Robinson, C. (2015). Biotechnological exploitation of microalgae. Journal of Experimental Botany 66, 6975–6990.
Biotechnological exploitation of microalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlWnt7bK&md5=f809efa19b76a72228b9f560a114d565CAS | 26400987PubMed |

Goettsch, B., Hilton-Taylor, C., Cruz-Piñón, G., Duffy, J. P., Frances, A., Hernández, H. M., Inger, R., Pollock, C., Schipper, J., Superina, M., et al. (2015). High proportion of cactus species threatened with extinction. Nature Plants 1, 15142.
High proportion of cactus species threatened with extinction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFClsLfN&md5=bded0be7677b15265b49f2f858089bcfCAS | 27251394PubMed |

Government of Western Australia (1995). Withdrawal of Australian company from AIDS treatment project. Available at: www.mediastatements.wa.gov.au/Pages/Court/1995/03/Withdrawal-of-Australian-company-from-AIDS-treatment-project.aspx (accessed 27 August 2015).

Greay, S. J., Carson, C., Beilharz, M., Kissick, H., Ireland, D., and Riley, T. V. (2010). ‘Anticancer Activity of Tea Tree Oil.’ RIRDC Publication No. 10/060. (RIRDC: Canberra, ACT.)

Green, A. C., and Beardmore, G. L. (1988). Home treatment of skin cancer and solar keratoses. Australasian Journal of Dermatology 29, 127–130.
Home treatment of skin cancer and solar keratoses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7msFygtQ%3D%3D&md5=fa746ab8ea89258e0481601f750c1590CAS | 3272119PubMed |

Guilfoile, P. G. (2007). ‘Antibiotic-resistant Bacteria.’ (Chelsea House: New York.)

Harlev, E., Nevo, E., Lansky, E. P., Lansky, S., and Bishayee, A. (2012). Anticancer attributes of desert plants: a review. Anti-Cancer Drugs 23, 255–271.
Anticancer attributes of desert plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFaqsLs%3D&md5=bb05ee422a60a5bdfb5167f35ecd4341CAS | 22217921PubMed |

Hart, P. H., Brand, C., Carson, C. F., Riley, T. V., Prager, R. H., and Finlay-Jones, J. J. (2000). Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflammation Research 49, 619–626.
Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptV2mtb4%3D&md5=368e2c8aaca3c6b1d82a8cb3d35c0a35CAS | 11131302PubMed |

Harvey, A. L., Edrada-Ebel, R., and Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews. Drug Discovery 14, 111–129.
The re-emergence of natural products for drug discovery in the genomics era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVarsbg%3D&md5=1fbcba4012f7b49674a2adced8046f58CAS | 25614221PubMed |

Helson, J. E., Capson, T. L., Johns, T., Aiello, A., and Windsor, D. M. (2009). Ecological and evolutionary bioprospecting: using aposematic insects as guides to rainforest plants active against disease. Frontiers in Ecology and the Environment 7, 130–134.
Ecological and evolutionary bioprospecting: using aposematic insects as guides to rainforest plants active against disease.Crossref | GoogleScholarGoogle Scholar |

Holohan, C., Van Schaeybroeck, S., Longley, D. B., and Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews. Cancer 13, 714–726.
Cancer drug resistance: an evolving paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyqurnE&md5=0bbe1add34af257a5228b5a59851baf6CAS | 24060863PubMed |

Ireland, D. J., Greay, S. J., Hooper, C. M., Kissick, H. T., Filion, P., Riley, T. V., and Beilharz, M. W. (2012). Topically applied Melaleuca alternifolia (tea tree) oil causes direct anti-cancer cytotoxicity in subcutaneous tumour bearing mice. Journal of Dermatological Science 67, 120–129.
Topically applied Melaleuca alternifolia (tea tree) oil causes direct anti-cancer cytotoxicity in subcutaneous tumour bearing mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFagt74%3D&md5=b211dfeec130cd3c3f3dc521cf1a0f1fCAS | 22727730PubMed |

Ji, H.-F., Li, X.-J., and Zhang, H.-Y. (2009). Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Reports 10, 194–200.
Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKksLg%3D&md5=c4ea1fc54697ba74b927585bc8221158CAS | 19229284PubMed |

Jones, G. L., Smith, J. E., and Watson, K. (2007). Bioactive properties of native Australian medicinal plants. In ‘Advances in Medicinal Plant Research’. (Eds S. N. Acharya and J. E. Thomas.) pp. 257–285. (Research Signpost: Kerala, India.)

Kerr, P. G. (2010). Bioprospecting in Australia: sound biopractice or biopiracy? Social Alternatives 29, 44–48.

Klyachko, K. A., Schuldiner, S., and Neyfakh, A. A. (1997). Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr. Journal of Bacteriology 179, 2189–2193.
| 1:CAS:528:DyaK2sXit1CksLg%3D&md5=88a43d44f439c0a64546d2ad20e57701CAS | 9079903PubMed |

Koehn, F. E., and Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nature Reviews. Drug Discovery 4, 206–220.
The evolving role of natural products in drug discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslSnsrg%3D&md5=6c431b1b14af944de87b0fa8f79361baCAS | 15729362PubMed |

Konczak, I., and Roulle, P. (2011). Nutritional properties of commercially grown native Australian fruits: lipophilic antioxidants and minerals. Food Research International 44, 2339–2344.
Nutritional properties of commercially grown native Australian fruits: lipophilic antioxidants and minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Kgtrk%3D&md5=4a450f75f0d63b8080bbe4644fa299ffCAS |

Kursar, T. A., Capson, T. L., Coley, P. D., Corley, D. G., Gupta, M. B., Harrison, L. A., Ortega-Barría, E., and Windsor, D. M. (1999). Ecologically guided bioprospecting in Panama. Pharmaceutical Biology 37, 114–126.
Ecologically guided bioprospecting in Panama.Crossref | GoogleScholarGoogle Scholar |

Laird, S., Monagle, C., and Johnston, S. (2008). ‘Queensland Biodiscovery Collaboration: The Griffith University AstraZeneca Partnership for Natural Product Discovery.’ (Department of the Environment, Water, Heritage and the Arts and United Nations University – Institute of Advanced Studies: Yokohama, Japan.)

Lassak, E. V., and McCarthy, T. (2011). ‘Australian Medicinal Plants.’ 2nd edn. (New Holland Publishers: Chatswood, NSW.)

Lim, E. L., and Hammer, K. A. (2015). Adaptation to NaCl reduces the susceptibility of Enterococcus faecalis to Melaleuca alternifolia (tea tree) oil. Current Microbiology 71, 429–433.
Adaptation to NaCl reduces the susceptibility of Enterococcus faecalis to Melaleuca alternifolia (tea tree) oil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFGnsL7N&md5=72d2d6581644e6ba5d513b4432e29c9fCAS | 26159776PubMed |

Lis-Balchin, M. (1997). Essential oils and ‘aromatherapy’: their modern role in healing. Journal of the Royal Society of Health 117, 324–329.
| 1:STN:280:DyaK1c7otVWqtw%3D%3D&md5=ddf8611a30a78bcf3dc290a02bd327a4CAS | 9519666PubMed |

Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American Journal of Clinical Nutrition 78, 517S–520S.
| 1:CAS:528:DC%2BD3sXntFekt7Y%3D&md5=d3e045ce9c738558d097f97797dd05cfCAS | 12936943PubMed |

Liu, L., Gitz, D. C., and McClure, J. W. (1995). Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiologia Plantarum 93, 725–733.
Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFCmsrw%3D&md5=1c7adbba2a7aa27cf59ba05ee926b4b4CAS |

Liu, C.-Z., Guo, C., Wang, Y.-C., and Ouyang, F. (2002). Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochemistry 38, 581–585.
Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFaksQ%3D%3D&md5=1934e378fd84a95b2e0d27f894736056CAS |

Locher, C., Semple, S. J., and Simpson, B. S. (2013). Traditional Australian Aboriginal medicinal plants: an untapped resource for novel therapeutic compounds? Future Medicinal Chemistry 5, 733–736.
Traditional Australian Aboriginal medicinal plants: an untapped resource for novel therapeutic compounds?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFyrs7w%3D&md5=b85c493ce598fb8e705c19401a489032CAS | 23651086PubMed |

Macarron, R., Banks, M. N., Bojanic, D., Burns, D. J., Cirovic, D. A., Garyantes, T., Green, D. V. S., Hertzberg, R. P., Janzen, W. P., Paslay, J. W., Schopfer, U., and Sittampalam, G. S. (2011). Impact of high-throughput screening in biomedical research. Nature Reviews. Drug Discovery 10, 188–195.
Impact of high-throughput screening in biomedical research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFensbY%3D&md5=5a5a105ede531f81546405f3bb9dbaf6CAS | 21358738PubMed |

Maiden, J. (1917). Weeds of New South Wales. Agricultural Gazette NSW 28, 131–132.

McNair, J. (1935). Angiosperm phylogeny on a chemical basis. Bulletin of the Torrey Botanical Club 62, 515–532.
Angiosperm phylogeny on a chemical basis.Crossref | GoogleScholarGoogle Scholar |

Memmott, P., Reser, J., Head, B., Davidson, J., Nash, D., O’Rourke, T., Gamage, H., Suliman, S., Lowry, A., and Marshall, K. (2013). ‘Aboriginal Responses to Climate Change in Arid Zone Australia: Regional Understandings and Capacity Building for Adaptation.’ (National Climate Change Adaptation Research Facility: Gold Coast, Qld.)

Mills, C., Carroll, A. R., and Quinn, R. J. (2005). Acutangulosides A–F, monodesmosidic saponins from the bark of Barringtonia acutangula. Journal of Natural Products 68, 311–318.
Acutangulosides A–F, monodesmosidic saponins from the bark of Barringtonia acutangula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yitr8%3D&md5=b090e269a08864296c4dc8b429b697ceCAS | 15787427PubMed |

Netzel, M., Netzel, G., Tian, Q., Schwartz, S., and Konczak, I. (2007). Native Australian fruits: a novel source of antioxidants for food. Innovative Food Science & Emerging Technologies 8, 339–346.
Native Australian fruits: a novel source of antioxidants for food.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVCgsLg%3D&md5=d0e10c229ec2ef732ca44dd32397f20aCAS |

Özer, G., and Bayraktar, H. (2015). Determination of fungal pathogens associated with Cuminum cyminum in Turkey. Plant Protection Science 51, 74–79.
Determination of fungal pathogens associated with Cuminum cyminum in Turkey.Crossref | GoogleScholarGoogle Scholar |

Page, J. E., and Towers, G. H. (2002). Anthocyanins protect light-sensitive thiarubrine phototoxins. Planta 215, 478–484.
Anthocyanins protect light-sensitive thiarubrine phototoxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFSltrg%3D&md5=5613d21060305e12400f876c7a7f8d36CAS | 12111231PubMed |

Pearson, M. (1993). The good oil: eucalyptus oil distilleries in Australia. Australasian Historical Archaeology; Journal of the Australasian Society for Historical Archaeology 11, 99–107.

Penfold, A. R., and Grant, R. (1925). The germicidal values of some Australian essential oils and their pure constituents, together with those of some essential oil isolates and synthetics. Part 3. Journal and Proceedings of the Royal Society of New South Wales 58, 346–350.

Poloni, A., and Schirawski, J. (2014). Red card for pathogens: phytoalexins in sorghum and maize. Molecules 19, 9114–9133.
Red card for pathogens: phytoalexins in sorghum and maize.Crossref | GoogleScholarGoogle Scholar | 24983861PubMed |

Price, J. (1961). Australian natural product research. Pure and Applied Chemistry 2, 367–382.
Australian natural product research.Crossref | GoogleScholarGoogle Scholar |

Price, J. R., Lamberton, J. A., and Culvenor, C. C. J. (1992). The Australian Phytochemical Survey: historical aspects of the CSIRO search for new drugs in Australian plants. Historical Records of Australian Science 9, 335–356.
The Australian Phytochemical Survey: historical aspects of the CSIRO search for new drugs in Australian plants.Crossref | GoogleScholarGoogle Scholar |

Prime Minister’s Science, Engineering and Innovation Council (PMSEIC) (2010). ‘Australia and Food Security in a Changing World.’ (PMSEIC: Canberra, ACT.)

Quinn, R., and Mills, C. (2004). ‘Analgesic Compounds, Extracts Containing Same and Methods of Preparation.’ PCT/AU2004/001660. (IP Australia: Canberra, ACT.)

Rimmer, M. (2003). Legal protection of Indigenous traditional knowledge and cultural expression. Southern Cross University Law Review 7, 1–49.

Sadgrove, N., and Jones, G. (2015). A contemporary introduction to essential oils: chemistry, bioactivity and prospects for Australian agriculture. Agriculture 5, 48–102.
A contemporary introduction to essential oils: chemistry, bioactivity and prospects for Australian agriculture.Crossref | GoogleScholarGoogle Scholar |

Schuck, S., Weinhold, A., Luu, V., and Baldwin, I. (2014). Isolating fungal pathogens from a dynamic disease outbreak in a native plant population to establish plant–pathogen bioassays for the ecological model plant Nicotiana attenuata. PLoS One 9, e102915.
Isolating fungal pathogens from a dynamic disease outbreak in a native plant population to establish plant–pathogen bioassays for the ecological model plant Nicotiana attenuata.Crossref | GoogleScholarGoogle Scholar | 25036191PubMed |

Semple, S. J., Simpson, B. S., McKinnon, R. A., Claudie, D., Gerber, J. P., Wang, J., and Moreton, G. S. (2010) ‘Anti-inflammatory Compounds.’ PCT/AU2010/001502. (IP Australia: Canberra, ACT.)

Silcock, J. L., Healy, A. J., and Fensham, R. J. (2015). Lost in time and space: re-assessment of conservation status in an arid-zone flora through targeted field survey. Australian Journal of Botany 62, 674–688.
Lost in time and space: re-assessment of conservation status in an arid-zone flora through targeted field survey.Crossref | GoogleScholarGoogle Scholar |

Simpson, B. S. (2013). Dioecy in plants: is it an important factor for phytochemists to consider? Planta Medica 79, 613–615.
Dioecy in plants: is it an important factor for phytochemists to consider?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejt77L&md5=086ba1625d44abaabe573be5f37bdbb4CAS | 23576177PubMed |

Simpson, B., Claudie, D., Smith, N., Wang, J., McKinnon, R., and Semple, S. (2010). Evaluation of the anti-inflammatory properties of Dodonaea polyandra, a Kaanju traditional medicine. Journal of Ethnopharmacology 132, 340–343.
Evaluation of the anti-inflammatory properties of Dodonaea polyandra, a Kaanju traditional medicine.Crossref | GoogleScholarGoogle Scholar | 20633620PubMed |

Simpson, B. S., Claudie, D. J., Gerber, J. P., Pyke, S. M., Wang, J., McKinnon, R. A., and Semple, S. J. (2011a). In vivo activity of benzoyl ester clerodane diterpenoid derivatives from Dodonaea polyandra. Journal of Natural Products 74, 650–657.
In vivo activity of benzoyl ester clerodane diterpenoid derivatives from Dodonaea polyandra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVSisbo%3D&md5=b62d4c2eb0ec95d78476ab58df72024eCAS | 21381684PubMed |

Simpson, B. S., Claudie, D. J., Smith, N. M., Gerber, J. P., McKinnon, R. A., and Semple, S. J. (2011b). Flavonoids from the leaves and stems of Dodonaea polyandra: a Northern Kaanju medicinal plant. Phytochemistry 72, 1883–1888.
Flavonoids from the leaves and stems of Dodonaea polyandra: a Northern Kaanju medicinal plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFSls7k%3D&md5=62072cc4f0c459f7f1db02faa76e6745CAS | 21641623PubMed |

Simpson, B. S., Claudie, D. J., Smith, N. M., McKinnon, R. A., and Semple, S. J. (2012). Rare, seven-membered cyclic ether labdane diterpenoid from Dodonaea polyandra. Phytochemistry 84, 141–146.
Rare, seven-membered cyclic ether labdane diterpenoid from Dodonaea polyandra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKksL7E&md5=cb5d2bda935367cb4a960caa4a104540CAS | 22910374PubMed |

Simpson, B. S., Claudie, D. J., Smith, N. M., McKinnon, R. A., and Semple, S. J. (2013). Learning from both sides: experiences and opportunities in the investigation of Australian Aboriginal medicinal plants. Journal of Pharmacy & Pharmaceutical Sciences 16, 259–271.
Learning from both sides: experiences and opportunities in the investigation of Australian Aboriginal medicinal plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Cmsb3J&md5=9f039b93d1ebe9fdfe14f2a0f1724c94CAS |

Simpson, B. S., Luo, X., Costabile, M., Caughey, G. E., Wang, J., Claudie, D. J., McKinnon, R. A., and Semple, S. J. (2014). Polyandric acid A, a clerodane diterpenoid from the Australian medicinal plant Dodonaea polyandra, attenuates pro-inflammatory cytokine secretion in vitro and in vivo. Journal of Natural Products 77, 85–91.
Polyandric acid A, a clerodane diterpenoid from the Australian medicinal plant Dodonaea polyandra, attenuates pro-inflammatory cytokine secretion in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvFGkuw%3D%3D&md5=5857a934f0d481b79f048a990c340647CAS | 24400858PubMed |

Singh, B., and Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3. Biotech 5, 129–151.

Soni, V. (2008). Anthocyanin-mediated photoprotective role of anthocyanins in Commiphora wightii. The Journal of Plant Science Research 24, 95–97.

Southwell, I. A., and Brophy, J. J. (2000). Essential oil isolates from the Australian flora. Part 3. The Journal of Essential Oil Research 12, 267–278.
Essential oil isolates from the Australian flora. Part 3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFKit7c%3D&md5=c26999b8f3cd5ff215dbd85182c476e0CAS |

State Herbarium of South Australia (2010) eFloraSA: electronic flora of South Australia. Available at: www.flora.sa.gov.au/index.html (accessed 20 April 2016).

Stavri, M., Piddock, L. J. V., and Gibbons, S. (2007). Bacterial efflux pump inhibitors from natural sources. The Journal of Antimicrobial Chemotherapy 59, 1247–1260.
Bacterial efflux pump inhibitors from natural sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVahtbg%3D&md5=3ae7c6cc44fc64147f38b8f80ddb9647CAS | 17145734PubMed |

Sun, J., Deng, Z., and Yan, A. (2014). Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications 453, 254–267.
Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslahsLc%3D&md5=ff32c8753a6fa26d6d0c0db060eb786cCAS | 24878531PubMed |

United Nations Educational Scientific and Cultural Organization (UNESCO) (1960). ‘Medicinal Plants of the Arid Zones.’ (UNESCO: Paris, France.)

War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., and Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7, 1306–1320.
Mechanisms of plant defense against insect herbivores.Crossref | GoogleScholarGoogle Scholar |

Webb, L. J. (1948). ‘Guide to the Medicinal and Poisonous Plants of Queensland.’ CSIRO Bulletin No. 232. (Government Printer: Melbourne, Vic.)

World Health Organization (WHO) (2002a). ‘Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation.’ (WHO: Geneva, Switzerland.)

World Health Organization (WHO) (2002b). ‘WHO Traditional Medicine Strategy 2002–2005.’ (WHO: Geneva, Switzerland.)

Yu, L., and Lu, J. (2011). Does landscape fragmentation influence sex ratio of dioecious plants? A case study of Pistacia chinensis in the Thousand-Island Lake region of China. PLoS One 6, e22903.
Does landscape fragmentation influence sex ratio of dioecious plants? A case study of Pistacia chinensis in the Thousand-Island Lake region of China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWitbjI&md5=eb200fbb66bffd9d8267ae3bf751e73cCAS | 21829667PubMed |

Zarchi, K., and Jemec, G. B. (2015). Ingenol mebutate: from common weed to cancer cure. Current Problems in Dermatology 46, 136–142.
| 25561218PubMed |