Cattle landscape selectivity is influenced by ecological and management factors in a heterogeneous mountain rangeland
A. R. von Müller A D , D. Renison B and A. M. Cingolani CA Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agroforestal Esquel (INTA EEAf Esquel), Chacabuco 513.CP: 9200, Esquel, Chubut, Argentina.
B Instituto de Investigaciones Biológicas y Tecnológicas, Centro de Ecología y Recursos Naturales Renovables (CONICET – Universidad Nacional de Córdoba), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina.
C Instituto Multidisciplinario de Biología Vegetal (CONICET – Universidad Nacional de Córdoba), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina.
D Corresponding author. Email: vonmuller.axel@inta.gob.ar
The Rangeland Journal 39(1) 1-14 https://doi.org/10.1071/RJ15114
Submitted: 18 November 2015 Accepted: 23 November 2016 Published: 5 January 2017
Abstract
Few studies addressing drivers of cattle selectivity focus on the combination of ecological (biotic and abiotic) and management factors such as rotational systems, paddock sizes and paddock shapes. As a consequence, it is difficult to prioritise management practices integrating information of different driving factors. In a heterogeneous mountain rangeland in Central Argentina we established a total of 419 square study plots of 1 ha located in 18 paddocks with differing sizes, shapes and cattle grazing management. Plots were small samples of landscapes, covering all existing variability in vegetation and physiography. For each plot we estimated the annual cattle use, average seasonal cattle density, forage types and abiotic characteristics. We used general linear models to show that selectivity was mainly driven by biotic variables. Cattle selected landscapes dominated by short palatable plants, but the strength of this influence differed among paddocks. Selectivity was strongest in paddocks with low abundance of lawns dominated by short palatable plants and low annual stocking rate. As stocking rate and the availability of lawns increased, selectivity strength decreased. Abiotic variables had far less influence than biotic variables, showing that cattle tended to avoid rough landscapes with steep terrain in the wet-warm season; and to be attracted by permanent water sources during the dry-cold season. Seasonal stocking density and paddock size had no detectable influence on cattle selectivity and distribution. Paddock shape influenced distribution but not the strength of forage selectivity. We conclude that in our system, cattle selectivity is mainly driven by biotic factors, and the most effective methods of changing the consequent distribution pattern is by manipulating forage types and paddock shape. The role of stocking rate remains controversial as it was correlated with the proportion of lawns in the paddock.
Additional keywords: distribution patterns, domestic herbivores, grazing lawns, paddock characteristics, stocking rate.
References
Adler, P. B., and Hall, S. A. (2005). The development of forage production and utilization gradients around livestock watering points. Landscape Ecology 20, 319–333.| The development of forage production and utilization gradients around livestock watering points.Crossref | GoogleScholarGoogle Scholar |
Adler, P. B., Raff, D. A., and Lauenroth, W. K. (2001). The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128, 465–479.
| The effect of grazing on the spatial heterogeneity of vegetation.Crossref | GoogleScholarGoogle Scholar |
Allen, V. G., Batello, C., Berretta, E. J., Hodgson, J., Kothmann, M., Li, X., McIvor, J., Milne, J., Morris, C., Peeters, A., and Sanderson, M. (2011). An international terminology for grazing lands and grazing animals. The Forage and Grazing Terminology Committee. Grass and Forage Science 66, 2–28.
| An international terminology for grazing lands and grazing animals. The Forage and Grazing Terminology Committee.Crossref | GoogleScholarGoogle Scholar |
APN (2004). ‘Plan de Manejo del Parque Nacional Quebrada del Condorito y Reserva Hídrica Provincial de Achala.’ (‘Quebrada del Condorito National Park’s and Pampa de Achala Hidric Reserve’s Management Program’) (Administración de Parques Nacionales. Delegación Regional Centro: Córdoa, Argentina.) [In Spanish]
APN (2007). Plan de manejo parque Nacional Quebrada del Condorito y Reserva Hídrica Provincial de Achala. (‘Quebrada del Condorito National Park’s and Pampa de Achala Hidric Reserve’s Management Program’) (Administración de Parques Nacionales. Editorial APN, Argentina.) [In Spanish]
Bailey, D. W. (1995). Daily selection of feeding areas by cattle in homogeneous and heterogeneous environments. Applied Animal Behaviour Science 45, 183–200.
| Daily selection of feeding areas by cattle in homogeneous and heterogeneous environments.Crossref | GoogleScholarGoogle Scholar |
Bailey, D. W. (2004). Management strategies for optimal grazing distribution and use of arid rangelands. Journal of Animal Science 82, 147–153.
Bailey, D. W., and Brown, J. R. (2011). Rotational grazing systems and livestock grazing behavior in shrub-dominated semi-arid and arid rangelands. Rangeland Ecology and Management 64, 1–9.
| Rotational grazing systems and livestock grazing behavior in shrub-dominated semi-arid and arid rangelands.Crossref | GoogleScholarGoogle Scholar |
Bailey, D. W., Gross, J. E., Laca, E. A., Rittenhouse, L. R., Coughenour, M. B., Swift, D. M., and Sims, P. L. (1996). Mechanisms that result in large herbivore grazing distribution patterns. Journal of Range Management 49, 386–400.
| Mechanisms that result in large herbivore grazing distribution patterns.Crossref | GoogleScholarGoogle Scholar |
Bailey, D. W., Kress, D. D., Anderson, D. C., Boss, D. L., and Miller, E. T. (2001). Relationship between terrain use and performance of beef cows grazing foothhill rangeland. Journal of Animal Science 79, 1883–1891.
| Relationship between terrain use and performance of beef cows grazing foothhill rangeland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVCjt7g%3D&md5=de32acaa618e0b209e21e2ddba7e1132CAS |
Bailey, D. W., Keil, M. R., and Rittenhouse, L. R. (2004). Research observation: daily movement patterns of hill climbing and bottom dwelling cows. Journal of Range Management 57, 20–28.
| Research observation: daily movement patterns of hill climbing and bottom dwelling cows.Crossref | GoogleScholarGoogle Scholar |
Bailey, D. W., Stephenson, M. E., and Pittarello, M. (2015). Effect of terrain heterogeneity on feeding site selection and livestock movement patterns. Animal Production Science 55, 298–308.
| Effect of terrain heterogeneity on feeding site selection and livestock movement patterns.Crossref | GoogleScholarGoogle Scholar |
Barnes, M. K., Norton, B. E., Maeno, M., and Malechek, J. C. (2008). Paddock size and stocking density affect spatial heterogeneity of grazing. Rangeland Ecology and Management 61, 380–388.
| Paddock size and stocking density affect spatial heterogeneity of grazing.Crossref | GoogleScholarGoogle Scholar |
Barri, F., Falczuk, V., Cingolani, A. M., and Díaz, S. (2014). Dieta de la población de guanacos (Lama guanicoe) reintroducida en el Parque Nacional Quebrada del Condorito, Argentina. (Diet of the reintroduced guanaco (Lama guanicoe) population into the Quebrada del Condorito National Park, Argentina). Ecología Austral 24, 203–211.
Berberián, E., and Roldán, F. (2001). ‘Arqueología de las Sierras Centrales.’(‘Archeology from Sierras Grandes’). In: ‘Historia Argentina Prehispánica Tomo 2’. (‘Argentinean Prehispanic History Issue 2’) (Eds E. Berberián and A. E. Nielen.) pp. 635–691. (Editorial Brujas: Buenos Aires, Argentina.) [In Spanish]
Brock, B. L., and Owensby, C. E. (2000). Predictive models for grazing distribution. Journal of Range Management 53, 39–46.
| Predictive models for grazing distribution.Crossref | GoogleScholarGoogle Scholar |
Broweleit, R. B., Schacht, W. H., Anderson, B. E., and Smart, A. J. (2000). Forage removal and grazing time of cattle on small paddocks. Journal of Range Management 53, 282–286.
| Forage removal and grazing time of cattle on small paddocks.Crossref | GoogleScholarGoogle Scholar |
Cabido, M., Breimer, R., and Vega, G. (1987). Plant communities and associated soil types in a high plateau of the Córdoba mountains, Argentina. Mountain Research and Development 7, 25–42.
| Plant communities and associated soil types in a high plateau of the Córdoba mountains, Argentina.Crossref | GoogleScholarGoogle Scholar |
Castellano, M. J., and Valone, T. J. (2007). Livestock, soil compaction and water infiltration rate: evaluating a potential desertification recovery mechanism. Journal of Arid Environments 71, 97–108.
| Livestock, soil compaction and water infiltration rate: evaluating a potential desertification recovery mechanism.Crossref | GoogleScholarGoogle Scholar |
Chartier, M. P., and Rostagno, C. M. (2006). Soil erosion thresholds and alternative states in North-eastern Patagonian rangelands. Rangeland Ecology and Management 59, 616–624.
| Soil erosion thresholds and alternative states in North-eastern Patagonian rangelands.Crossref | GoogleScholarGoogle Scholar |
Cid, M. S., and Brizuela, M. A. (1998). Heterogeneity in tall fescue pastures created and sustained by cattle grazing. Journal of Range Management 51, 644–649.
| Heterogeneity in tall fescue pastures created and sustained by cattle grazing.Crossref | GoogleScholarGoogle Scholar |
Cingolani, A. M., Anchorena, J., Stoffella, S., and Collantes, M. (2002). A landscape-scale model for optimal management of sheep grazing in the Magellanic steppe. Applied Vegetation Science 5, 159–166.
Cingolani, A. M., Renison, D., Zak, M., and Cabido, M. (2004). Mapping vegetation in a heterogeneous mountain using Landsat data: an alternative method to define and classify land-cover units. Remote Sensing of Environment 92, 84–97.
| Mapping vegetation in a heterogeneous mountain using Landsat data: an alternative method to define and classify land-cover units.Crossref | GoogleScholarGoogle Scholar |
Cingolani, A. M., Noy-Meir, I., and Díaz, S. (2005). Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecological Applications 15, 757–773.
| Grazing effects on rangeland diversity: A synthesis of contemporary models.Crossref | GoogleScholarGoogle Scholar |
Cingolani, A. M., Noy-Meir, I., Renison, D., and Cabido, M. (2008a). La ganadería extensiva, ¿es compatible con la conservación de la biodiversidad y de los suelos? Ecología Austral 18, 253–271.
Cingolani, A. M., Renison, D., Tecco, P. A., Gurvich, D. E., and Cabido, M. (2008b). Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. Journal of Biogeography 35, 538–551.
| Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach.Crossref | GoogleScholarGoogle Scholar |
Cingolani, A. M., Vaieretti, M. V., Giorgis, M. A., La Torre, N., Whitworth-Hulse, J. I., and Renison, D. (2013). Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert? The Rangeland Journal 35, 285–297.
| Can livestock and fires convert the sub-tropical mountain rangelands of central Argentina into a rocky desert?Crossref | GoogleScholarGoogle Scholar |
Cingolani, A. M., Vaieretti, M. V., Giorgis, M. A., Poca, M., Tecco, P. A., and Gurvich, D. E. (2014). Can livestock grazing maintain landscape diversity and stability in an ecosystem that evolved with wild herbivores? Perspectives in Plant Ecology, Evolution and Systematics 16, 143–153.
| Can livestock grazing maintain landscape diversity and stability in an ecosystem that evolved with wild herbivores?Crossref | GoogleScholarGoogle Scholar |
Cingolani, A. M., Poca, M., Giorgis, M. A., Vaieretti, M. V., Gurvich, D. E., Whitworth-Hulse, J. I., and Renison, D. (2015). Water provisioning services in a seasonally dry subtropical mountain: identifying priority landscapes for conservation. Journal of Hydrology 525, 178–187.
| Water provisioning services in a seasonally dry subtropical mountain: identifying priority landscapes for conservation.Crossref | GoogleScholarGoogle Scholar |
Cocimano, M., Lange, A., and Menvielle, E. (1975). Estudio sobre equivalencias ganaderas. (Study from livestock equivalences). Producción Animal 4, 161–190.
Colladón, L. (2010). Anuario pluviométrico 1992–2010. Cuenca del Río San Antonio. Sistema del Río Suquía – Provincia de Córdoba. (‘Annual precipitation 1992–2010 – San Antonio river. Suquía river system – Córdoba Province.’) (Instituto Nacional del Agua y del Ambiente (INAA) y Centro de Investigaciones de la Región Semiárida (CIRSA): Córdoba, Argentina.) [In Spanish]
Díaz, S., Acosta, A., and Cabido, M. (1994). Community structure in montane grasslands of central Argentina in relation to land use. Journal of Vegetation Science 5, 483–488.
| Community structure in montane grasslands of central Argentina in relation to land use.Crossref | GoogleScholarGoogle Scholar |
Díaz Falú, E. M., Brizuela, M. A., Cid, M. S., Cibils, A. F., Cendoya, M. G., and Bendersky, D. B. (2014). Daily feeding site selection of cattle and sheep co-grazing a heterogeneous subtropical grassland. Livestock Science 161, 147–157.
| Daily feeding site selection of cattle and sheep co-grazing a heterogeneous subtropical grassland.Crossref | GoogleScholarGoogle Scholar |
Falczuk, V. (2002). Relaciones entre selección de dieta de grandes herbívoros, disponibilidad y características físico-químicas de las plantas en un pastizal de altura de las Sierras de Córdoba. (‘Diet selectivity relationships on large herbivores, availability and phisico-chemical characteristics of plants in highland rangelands from Córdoba’s Sierras’). Thesis Doctoral, Fac. de Cs. Ex., Fís. y Nat. Universidad de Córdoba. Argentina. [In Spanish].
Flores, C., Cingolani, A. M., von Müller, A., and Barri, F. (2012). Habitat selection in a population of guanacos (Lama guanicoe) reintroduced to Quebrada del Condorito National Park (Córdoba, Argentina). The Rangeland Journal 34, 439–445.
| Habitat selection in a population of guanacos (Lama guanicoe) reintroduced to Quebrada del Condorito National Park (Córdoba, Argentina).Crossref | GoogleScholarGoogle Scholar |
Fortin, M. J., and Dale, M. (2005). ‘Spatial Analysis: A Guide for Ecologists.’ (Cambridge University Press: Cambridge, UK.)
Fuhlendorf, S. D., and Engle, D. M. (2001). Restoring heterogeneity on rangelands: ecosystem management based on evolutionary grazing patterns. Bioscience 51, 625–632.
| Restoring heterogeneity on rangelands: ecosystem management based on evolutionary grazing patterns.Crossref | GoogleScholarGoogle Scholar |
Ganskopp, D., and Bohnert, D. (2006). Do pasture-scale nutritional patterns affect cattle distribution on rangelands? Rangeland Ecology and Management 59, 189–196.
| Do pasture-scale nutritional patterns affect cattle distribution on rangelands?Crossref | GoogleScholarGoogle Scholar |
Gillen, R. L., Krueger, W. C., and Miller, R. F. (1984). Cattle distribution on mountain rangeland in northeastern Oregon. Journal of Range Management 37, 549–553.
| Cattle distribution on mountain rangeland in northeastern Oregon.Crossref | GoogleScholarGoogle Scholar |
Giorgis, M. A., Cingolani, A. M., Teich, I., Renison, D., and Hensen, I. (2010). Do Polylepis australis trees tolerate herbivory? Seasonal patterns of shoot growth and its consumption by livestock. Plant Ecology 207, 307–319.
| Do Polylepis australis trees tolerate herbivory? Seasonal patterns of shoot growth and its consumption by livestock.Crossref | GoogleScholarGoogle Scholar |
Google Earth 5.0.1© (2016) Google. Images database©. DigitalGlobe.
Gross, J. E., Zank, C., Hobbs, N. T., and Spalinger, D. E. (1995). Movement rules for herbivores in spatially heterogeneous environments: responses to small scale pattern. Landscape Ecology 10, 209–217.
| Movement rules for herbivores in spatially heterogeneous environments: responses to small scale pattern.Crossref | GoogleScholarGoogle Scholar |
Hart, R. H., Bisso, J., Samuel, M. J., and Waggoner, J. W. (1993). Grazing systems, pasture size, and cattle grazing behavior, distribution and gains. Journal of Range Management 46, 81–87.
| Grazing systems, pasture size, and cattle grazing behavior, distribution and gains.Crossref | GoogleScholarGoogle Scholar |
Hofmann, R. R. (1989). Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457.
| Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system.Crossref | GoogleScholarGoogle Scholar |
Holechek, J. L. (1988). An approach for setting the stocking rate. Rangelands 10, 10–14.
Hunt, L. P., Petty, F. S., Cowley, R., Fisher, A., Ash, A. J., and MacDonald, N. (2007). Factors affecting the management of cattle grazing distribution in northern Australia: preliminary observations on the effect of paddock size and water points. The Rangeland Journal 29, 169–179.
| Factors affecting the management of cattle grazing distribution in northern Australia: preliminary observations on the effect of paddock size and water points.Crossref | GoogleScholarGoogle Scholar |
Hunt, L. P., McIvor, J. G., Grice, A. C., and Bray, S. G. (2014). Principles and guidelines for managing cattle grazing in the grazing lands of northern Australia: stocking rates, pasture resting, prescribed fire, paddock size and water points – a review. The Rangeland Journal 36, 105–119.
| Principles and guidelines for managing cattle grazing in the grazing lands of northern Australia: stocking rates, pasture resting, prescribed fire, paddock size and water points – a review.Crossref | GoogleScholarGoogle Scholar |
Jaacks, G. (2015). Informe de avance: monitoreo de quemas prescriptas. Plan de quemas prescriptas 2013, Parque Nacional Quebrada del Condorito. (Advanced report: prescribed fire monitoring in Quebrada del Condorito National Park) (Administración de Parques Nacionales: Córdoba, Argentina.) [In Spanish]
Kaufmann, J., Bork, E. W., Blenis, P. V., and Alexander, M. J. (2013). Cattle habitat selection and associated habitat characteristics under free-range grazing within heterogeneous Montane rangelands of Alberta. Applied Animal Behaviour Science 146, 1–10.
| Cattle habitat selection and associated habitat characteristics under free-range grazing within heterogeneous Montane rangelands of Alberta.Crossref | GoogleScholarGoogle Scholar |
Kemp, D. R., and Michalk, D. L. (2007). Towards sustainable grassland and livestock management. The Journal of Agricultural Science 145, 543–564.
| Towards sustainable grassland and livestock management.Crossref | GoogleScholarGoogle Scholar |
Kohler, F., Gillet, F., Reust, S., Wagner, H. H., Gadallah, F., Gobat, J. M., and Buttler, A. (2006). Spatial and seasonal patterns of cattle habitat use in a mountain wooded pasture. Landscape Ecology 21, 281–295.
| Spatial and seasonal patterns of cattle habitat use in a mountain wooded pasture.Crossref | GoogleScholarGoogle Scholar |
Krueger, W. C. (1972). Evaluating animal forage preference. Journal of Range Management 25, 471–475.
| Evaluating animal forage preference.Crossref | GoogleScholarGoogle Scholar |
Landsberg, J., James, C. D., Morton, S. R., Muller, W. J., and Stol, J. (2003). Abundance and composition of plant species along grazing gradients in Australian rangelands. Journal of Applied Ecology 40, 1008–1024.
| Abundance and composition of plant species along grazing gradients in Australian rangelands.Crossref | GoogleScholarGoogle Scholar |
McNaughton, S. J. (1986). Grazing lawns: on domesticated and wild grazers. American Naturalist 128, 937–939.
| Grazing lawns: on domesticated and wild grazers.Crossref | GoogleScholarGoogle Scholar |
Montero, R. S., and Bribiesca, E. (2009). State of the art of compactness and circularity measures. International Mathematical Forum 27, 1305–1335.
Oesterheld, M., and Semmartin, M. (2011). Impact of grazing on species composition: adding complexity to a generalized model. Austral Ecology 36, 881–890.
| Impact of grazing on species composition: adding complexity to a generalized model.Crossref | GoogleScholarGoogle Scholar |
Pucheta, E., Cabido, M., Díaz, S., and Funes, G. (1998). Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecologica 19, 97–105.
| Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina.Crossref | GoogleScholarGoogle Scholar |
Rinella, M. J., Vavra, M., Naylor, B. J., and Boyd, J. M. (2011). Estimating influences of stocking rate regimes on livestock grazing distributions. Ecological Modelling 222, 619–625.
| Estimating influences of stocking rate regimes on livestock grazing distributions.Crossref | GoogleScholarGoogle Scholar |
Senft, R. L., Coughenour, M. B., Bailey, D. W., Rittenhouse, L. R., Sala, O. E., and Swift, D. M. (1987). Large herbivore foraging and ecological hierarchies. Bioscience 37, 789–799.
| Large herbivore foraging and ecological hierarchies.Crossref | GoogleScholarGoogle Scholar |
Sevi, A., Muscio, A., Dantone, D., Iascone, V., and D’Emilio, F. (2001). Paddock shape effects on grazing behavior and efficiency in sheep. Journal of Range Management 54, 122–125.
| Paddock shape effects on grazing behavior and efficiency in sheep.Crossref | GoogleScholarGoogle Scholar |
SRM (1998). Glossary of terms used in range management. 4th edn. Edited by the Glossary Update Task Group of the Society for Range Management (SRM), Thomas E. Bedell Chairman. Available at: https://globalrangelands.org/rangelandswest/glossary (accessed 1 March 2016).
Teague, W. R., and Dowhower, S. L. (2003). Patch dynamics under rotational and continuous grazing management in large, heterogeneous paddocks. Journal of Arid Environments 53, 211–229.
| Patch dynamics under rotational and continuous grazing management in large, heterogeneous paddocks.Crossref | GoogleScholarGoogle Scholar |
Vaieretti, M. V., Cingolani, A. M., Pérez Harguindeguy, N., Gurvich, D. E., and Cabido, M. (2010). Does decomposition of standard materials differ among grassland patches maintained by livestock? Austral Ecology 35, 935–943.
| Does decomposition of standard materials differ among grassland patches maintained by livestock?Crossref | GoogleScholarGoogle Scholar |
Valentine, K. A. (1947). Distance from water as a factor in grazing capacity of rangeland. Journal of Forestry 45, 749–754.
Vallentine, J. F. (2001). ‘Grazing Management.’ (Academic Press-Harcourt Science and Technology Co: San Diego, CA, USA)
von Müller, A. R., Cingolani, A. M., Vaieretti, M. V., and Renison, D. (2012). Estimación de carga bovina localizada a partir de frecuencia de deposiciones en un pastizal de montaña. (Estimation of localized cattle stocking rate from dung frequency in a mountain grassland). Ecología Austral 22, 178–187.
Wang, G., Hobbs, N. T., Boone, R. B., Illius, A. W., Gordon, I. J., Gross, J. E., and Hamlin, K. L. (2006). Spatial and temporal variability modify density dependence in populations of large herbivores. Ecology 87, 95–102.
| Spatial and temporal variability modify density dependence in populations of large herbivores.Crossref | GoogleScholarGoogle Scholar |
Zuloaga, F. O., and Morrone, O. (1996). ‘Catálogo de las plantas vasculares de la República Argentina. I. Pteridophyta, Gymnospermae y Angiospermae (Monocotyledoneae)’. (‘Vascular Plants Catalogue from Argentina Republic I. Pteridophyta, Gymnospermae y Angiospermae (Monocotyledoneae))’. Monographs in Systematic Botany, Vol. 60. pp. 1–323. (Missouri Botanical Garden Presss: St Louis, MO, USA) [In Spanish]
Zuloaga, F. O., and Morrone, O. (1999). Catálogo de las plantas vasculares de la República Argentina. II. Angiospermae (Dicotyledoneae). (‘Vascular Plants Catalogue from Argentina Republic II. Angiospermae (Dicotyledoneae))’. Monographs in Systematic Botany, Vol. 74. pp. 1–1269. (Missouri Botanical Garden Press: St Louis, MO, USA) [In Spanish]
Zuloaga, F. O., Nicora, E. G., Rúgolo de Agrasar, Z. E., Morrone, O., Pensiero, J., and Cialdella, A. M. (1994). Catálogo de la familia Poaceae en la República Argentina. (‘Catalogue from the family Poaceae from Argentina Republic’). Monographs in Systematic Botany from the Missouri Botanical Garden 47, 1–178.