Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Genetic variation among Stipa grandis P. Smirn populations with different durations of fencing in the Inner Mongolian Steppe

Jian-bo Wu A , Yu-bao Gao A B , Xiao-ying Bao A , Hui Gao A , Mei-qing Jia A , Jie Li A and Nian-xi Zhao A
+ Author Affiliations
- Author Affiliations

A College of Life Science, Nankai University, Tianjin 300071, P.R. China.

B Corresponding author. Email: ybgao@mail.nankai.edu.cn

The Rangeland Journal 32(4) 427-434 https://doi.org/10.1071/RJ09038
Submitted: 1 July 2009  Accepted: 12 October 2010   Published: 26 November 2010

Abstract

The genetic structure of a population should be carefully considered in ecological restoration because it may play a critical role in maintaining the persistence of a restored ecosystem. In the present study, we examined genetic diversity and genetic structure of Stipa grandis P. Smirn populations from fenced and grazed plots using amplified fragment length polymorphism markers. Molecular genetic variation showed that the genetic diversity of the fenced populations was greater compared with the overgrazed population. There was a significant variation among the populations (Fst = 0.3689, P < 0.001) by AMOVA analysis, and the gene flow was 0.4039 among the populations. The results from a comparison of limited morphological characteristics and from an unweighted pair group method with arithmetic mean cluster analysis and non-metric multi-dimensional scaling analysis suggested that genetic differentiation had occurred between the fenced populations and the grazed populations. The largest genetic diversity was in the moderately grazed population, which might be related to higher population density and greater sexual reproduction due to less disturbances in the plots. The genetic diversity of the long-term (24 years) fenced population was similar to that of a short-term fenced population (fenced for 11 years). These results suggested that the genetic diversity in the overgrazed population might be increased to some extent through fencing, but this effect did not occur beyond 11 years.

Additional keywords: amplified fragment length polymorphism, genetic diversity, population restoration, Stipa grandis.


References

An, Y., Li, B., Yang, C., Yan, Z. J., and Han, G. D. (2002). Influence of grazing rate on population structure of Stipa grandis. Acta Phytoecologica Sinica 26, 163–169.

Bassam, B. J., Caetano-Anollés, G., and Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196, 80–83.
Fast and sensitive silver staining of DNA in polyacrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Ortr8%3D&md5=13eb706b57df8637283b9a473c0da9cfCAS | 1716076PubMed |

Chaneton, E. J., and Lavado, R. S. (1996). Soil nutrients and salinity after long-term grazing exclusion in a flooding Pampa grassland. Journal of Range Management 49, 182–187.
Soil nutrients and salinity after long-term grazing exclusion in a flooding Pampa grassland.Crossref | GoogleScholarGoogle Scholar |

Cheng, J. M., and Zou, H. Y. (1998). Effects of protective growing cutting and grazing on the vegetation of grassland. Research of Soil and Water Conservation 5, 36–54.

Crutsinger, G. M., Collins, M. D., Fordyce, J. A., Gompert, Z., Nice, C. C., and Sanders, N. J. (2006). Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313, 966–968.
Plant genotypic diversity predicts community structure and governs an ecosystem process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFCitLY%3D&md5=36b11b1c29aa6cbcdd9b7d7b4a731a7aCAS | 16917062PubMed |

Dolan, R. W., Marr, D. L., and Schnabel, A. (2008). Capturing genetic variation during ecological restorations: an example from Kankakee sands in Indiana. Restoration Ecology 16, 386–396.
Capturing genetic variation during ecological restorations: an example from Kankakee sands in Indiana.Crossref | GoogleScholarGoogle Scholar |

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics 11, 1–42.
Multiple range and multiple F tests.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred form metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=a25dab325999dbc6e5988092d0734125CAS | 1644282PubMed |

Fenster, C. B., and Dudash, M. R. (1994). Genetic considerations for plant population restoration and conservation. In: ‘Restoration of Endangered Species: Conceptual Issues, Planning and Implementation’. (Eds M. L. Bowles and C. Whelan.) pp. 34–62. (Cambridge University Press: Cambridge.)

Fırıncıoğlu, H. K., Seefeldt, S. S., and Şahin, B. (2007). The effects of long-term grazing exclosures on range plants in the central Anatolian region of Turkey. Environmental Management 39, 326–337.
| 17203339PubMed |

Fu, Y. B., Thompson, D., Willms, W., and Mackay, M. (2005). Long-term grazing effects on genetic variability in mountain rough fescue. Rangeland Ecology and Management 58, 637–642.
Long-term grazing effects on genetic variability in mountain rough fescue.Crossref | GoogleScholarGoogle Scholar |

Gustafson, D. J., Gibson, D. J., and Nickrent, D. L. (2002). Genetic diversity and competitive abilities of Dalea purpurea (Fabaceae) from remnant and stored grasslands. International Journal of Plant Sciences 163, 979–990.
Genetic diversity and competitive abilities of Dalea purpurea (Fabaceae) from remnant and stored grasslands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVWgsL0%3D&md5=f64e29eadb53c6fdc48bf9bded9629d4CAS |

Gustafson, D. J., Gibson, D. J., and Nickrent, D. L. (2004). Conservation genetics of two co-dominant grass species in an endangered grassland ecosystem. Journal of Applied Ecology 41, 389–397.
Conservation genetics of two co-dominant grass species in an endangered grassland ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFylsrg%3D&md5=4be82caa3781adc1e4c05e39f761fde2CAS |

Huff, D. R., Quinn, J. A., Higgins, B., and Palazzo, A. J. (1998). Random amplified polymorphic DNA (RAPD) variation among native little bluestem [Schizachyrium scoparium (Michx.) Nash] populations from sites of high and low fertility in forest and grassland biomes. Molecular Ecology 7, 1591–1597.
Random amplified polymorphic DNA (RAPD) variation among native little bluestem [Schizachyrium scoparium (Michx.) Nash] populations from sites of high and low fertility in forest and grassland biomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFSgtb4%3D&md5=5ec705908a3606dcb0de3a001f646b2cCAS |

Ingvarsson, P. K. (2002). A meta-population perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56, 2368–2373.
| 12583577PubMed |

Knapp, E. E., and Dyer, A. R. (1998). When do genetic considerations require special approaches to ecological restoration? In: ‘Conservation Biology for the Coming Decade’. 2nd edn. (Eds P. L. Fiedler and P. M. Kareiva.) pp. 345–363. (Chapman and Hall Inc.: New York.)

Krauss, S. L., and Koch, J. M. (2004). Rapid genetic delineation of provenance for plant community restoration. Journal of Applied Ecology 41, 1162–1173.
Rapid genetic delineation of provenance for plant community restoration.Crossref | GoogleScholarGoogle Scholar |

Lavado, R. S., Sierra, J. O., and Hashimoto, P. N. (1996). Impact of grazing on soil nutrients in a Pampean grassland. Journal of Range Management 49, 452–457.
Impact of grazing on soil nutrients in a Pampean grassland.Crossref | GoogleScholarGoogle Scholar |

Lesica, P., and Allendorf, F. W. (1999). Ecological genetics and the restoration of plant communities: mix or match. Restoration Ecology 7, 42–50.
Ecological genetics and the restoration of plant communities: mix or match.Crossref | GoogleScholarGoogle Scholar |

Li, Y. P., and Chen, S. H. (1996). The eco-biological characteristics of reproduction of Stipa grandis. Journal of Inner Mongolian institute of Agriculture and Animal Husbandry 17, 7–13.

Liston, A., Wilson, B. L., Robinson, W. A., Doescher, P. S., Harris, N. R., and Svejcar, T. (2003). The relative importance of sexual reproduction versus clonal spread in an arid-land bunchgrass. Oecologia 137, 216–225.
The relative importance of sexual reproduction versus clonal spread in an arid-land bunchgrass.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svltFWisw%3D%3D&md5=f6de17718fd8a3d834679e792462232dCAS | 12898380PubMed |

Liu, M. L., Taogetao, B. Y., Yang, C., and Zhang, X. S. (2007). Effect of mowing systems on composition of Stipa grandis community in Inner Mongolian steppe. Journal of Beijing Normal University (Natural Science) 43, 83–87.

Liu, M. H., Chen, X. Y., Zhang, X., and Shen, D. W. (2008). A population genetic evaluation of ecological restoration with the case study on Cyclobalanopsis myrsinaefolia (Fagaceae). Plant Ecology 197, 31–41.
A population genetic evaluation of ecological restoration with the case study on Cyclobalanopsis myrsinaefolia (Fagaceae).Crossref | GoogleScholarGoogle Scholar |

Martin, L. M., Moloney, K. A., and Wilsey, B. J. (2005). An assessment of grassland restoration success using species diversity components. Journal of Applied Ecology 42, 327–336.
An assessment of grassland restoration success using species diversity components.Crossref | GoogleScholarGoogle Scholar |

Matlaga, D., and Karoly, K. (2004). Long-term grazing effects on genetic variation in Idaho fescue. Journal of Range Management 57, 275–279.
Long-term grazing effects on genetic variation in Idaho fescue.Crossref | GoogleScholarGoogle Scholar |

Montalvo, A. M., Williams, S. L., Rice, K. J., Buchmann, S. L., Cory, C., Handel, S. N., Nabhan, G. P., Primack, R. P., and Robichaux, R. H. (1997). Restoration biology: a population perspective. Restoration Ecology 5, 277–290.
Restoration biology: a population perspective.Crossref | GoogleScholarGoogle Scholar |

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323.
Analysis of gene diversity in subdivided populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2FlsFCrtQ%3D%3D&md5=266698dbae705fc266810c639fa12f95CAS | 4519626PubMed |

Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intra-specific genetic diversity in plants. Molecular Ecology 13, 1143–1155.
Comparison of different nuclear DNA markers for estimating intra-specific genetic diversity in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktl2rsL0%3D&md5=3ae60ad56a77ee86618cab68f21a6a96CAS | 15078452PubMed |

Ramp, J. M., Collinge, S. K., and Ranker, T. A. (2006). Restoration genetics of the vernal pool endemic Lasthenia conjugens (Asteraceae). Conservation Genetics 7, 631–649.
Restoration genetics of the vernal pool endemic Lasthenia conjugens (Asteraceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWgtLvP&md5=0a075b7ac73f4255f5f83e513b6fb615CAS |

Reisch, C., Poschlod, P., and Wingender, R. (2003). Genetic differentiation among populations of Sesleria albicans Kit. Ex Schultes (Poaceae) from ecologically different habitats in central Europe. Heredity 91, 519–527.
Genetic differentiation among populations of Sesleria albicans Kit. Ex Schultes (Poaceae) from ecologically different habitats in central Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlaqt7Y%3D&md5=7fabdb22903658a818eb0d6507b941d5CAS | 14576746PubMed |

Reusch, T. B. H., Ehlers, A., Hammerli, A., and Worm, B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America 102, 2826–2831.
Ecosystem recovery after climatic extremes enhanced by genotypic diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVSksLY%3D&md5=3e8707f5c3273cd18c017d10bed5ac93CAS | 15710890PubMed |

Rohlf, F. J. (1994). ‘NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System. version 1.80.’ (Exeter Software: New York.)

Seliskar, D. M., Gallagher, J. L., Burdick, D. M., and Mutz, L. A. (2002). The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. Journal of Ecology 90, 1–11.
The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study.Crossref | GoogleScholarGoogle Scholar |

Shan, D. M., Zhao, L., Han, B., and Han, G. D. (2006). Genetic diversity of Stipa grandis under different grazing pressures. Acta Ecologica Sinica 26, 3175–3183.
Genetic diversity of Stipa grandis under different grazing pressures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12mtb%2FK&md5=66c07a69f6c5856404fc11ca0e9608d9CAS |

Smulders, M. J. M., van der Schoot, J., Geerts, R. H. E. M., Antonisse-de Jong, A. G., Korevaar, H., van der Werf, A., and Vosman, B. (2000). Genetic diversity and the reintroduction of meadow species. Plant Biology 2, 447–454.
Genetic diversity and the reintroduction of meadow species.Crossref | GoogleScholarGoogle Scholar |

Society for Ecological Restoration International Science and Policy Working Group (2004). ‘The SER International Primer on Ecological Restoration.’ (Society for Ecological Restoration International: Tucson, AZ.) Available at: www.ser.org (accessed 4 April 2006)

SPSS (1999) ‘SPSS 10.0 for Windows.’ (SPSS Inc.: Chicago, IL) Available at: www.spss.com

Sternberg, M., Gutman, M., Perevolotsky, A., Ungar, E. D., and Kigel, J. (2000). Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. Journal of Applied Ecology 37, 224–237.
Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach.Crossref | GoogleScholarGoogle Scholar |

The Vegetation of Inner Mongolia (1985). ‘Integrated Survey Team to Inner Mongolia-Ningxia.’ (Eds The Chinese Academy of Sciences.) pp. 495–516. (Science Press: Beijing.)

Tomás, M. A., Carrera, A. D., and Poverene, M. (2000). Is there any genetic differentiation among populations of Piptochaetium napostaense (Speg.) Hack (Poaceae) with different grazing histories? Plant Ecology 147, 227–235.
Is there any genetic differentiation among populations of Piptochaetium napostaense (Speg.) Hack (Poaceae) with different grazing histories?Crossref | GoogleScholarGoogle Scholar |

Travis, S. E., Proffitt, C. E., Lowenfeld, R. C., and Mitchell, T. W. (2002). A comparative assessment of genetic diversity among differently aged populations of Spartina alterniflora on restored versus natural wetlands. Restoration Ecology 10, 37–42.
A comparative assessment of genetic diversity among differently aged populations of Spartina alterniflora on restored versus natural wetlands.Crossref | GoogleScholarGoogle Scholar |

Urbanska, K. M., Webb, N., and Edwards, P. (1997). ‘Restoration Ecology and Sustainable Development.’ (Cambridge University Press: Cambridge.)

Vellend, M., and Waterway, M. J. (1999). Geographic patterns in the genetic diversity of northern sedge, Carex rariflora. Canadian Journal of Botany 77, 269–278.
Geographic patterns in the genetic diversity of northern sedge, Carex rariflora.Crossref | GoogleScholarGoogle Scholar |

Volis, S., Yakubov, B., Shulgina, I., Ward, D., Zur, V., and Mendlinger, S. (2001). Tests for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch. Biological Journal of the Linnaean Society 74, 289–303.
Tests for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch.Crossref | GoogleScholarGoogle Scholar |

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M., and Zabeau, M. (1995). AFLP: a new technique for DNA finger printing. Nucleic Acids Research 23, 4407–4414.
AFLP: a new technique for DNA finger printing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=a88757388eabd7df0163bd66dc55281eCAS | 7501463PubMed |

Wang, J., Yang, C., Yin, J., Wang, T. J., and Liu, P. T. (2004). Changes of the genetic diversity of Artemisia frigida population under the disturbance of grazing. Acta Ecologica Sinica 24, 2455–2471.

Wang, W., Liu, Z. L., Hao, D. Y., and Liang, C. Z. (1996). Research on the restoring succession of the degenerated grassland in Inner Mongolia I. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica 20, 449–459.

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–6535.
DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXjslWmsA%3D%3D&md5=92ab3e4498f7d914a1c93a2dfe8c5fbbCAS | 1979162PubMed |

Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97–159.
| 1:STN:280:DC%2BD2s%2FmsVGqsw%3D%3D&md5=ff9ac54a9cddfe713fde2f8cc9d2f4eaCAS | 17246615PubMed |

Wright, S. (1951). The genetical structure of populations. Annals of Eugenics 15, 323–354.

Wu, J. B., Chen, C. B., Bao, X. Y., Song, W. Q., Zhao, N. X., and Gao, Y. B. (2009). Chromosome numbers and karyotypes of Stipa baicalensis, Stipa grandis and Stipa krylovii in Inner-Mongolia Steppe. Bulletin of Botanical Research 29, 534–538.

Yeh, F. C., Yang, R. C., and Boyle, T. (1999). ‘POPGENE version 1.32. Microsoft Windows-based Software for Population Genetic Analysis: A Quick User’s Guide.’ (University of Alberta, Centre for International Forestry Research: Alberta.)

Zhang, H. M., Zhao, M. L., Li, Q. F., and Han, B. (2003). Morphological variations of Stipa grandis under grazing stress. Grasslands of China 25, 13–17.

Zhao, N. X., Gao, Y. B., Wang, J. L., Ren, A. Z., and Xu, H. (2006). RAPD diversity of Stipa grandis populations and its relationship with some ecological factors. Acta Ecologica Sinica 26, 1312–1319.
RAPD diversity of Stipa grandis populations and its relationship with some ecological factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1OlsLo%3D&md5=8f8eb07c7fa1c1e014b0bcf8a348c079CAS |

Zhao, N. X., Gao, Y. B., Wang, J. L., and Ren, A. Z. (2008). Population structure and genetic diversity of Stipa grandis P. Smirn, a dominant species in the typical steppe of northern China. Biochemical Systematics and Ecology 36, 1–10.
Population structure and genetic diversity of Stipa grandis P. Smirn, a dominant species in the typical steppe of northern China.Crossref | GoogleScholarGoogle Scholar |

Zhao, M. L., Willms, W. D., Han, B., and Laroche, A. (2005). Effect of heavy grazing pressure on the random amplified polymorphic DNA marker diversity of mountain rough fescue (Festuca campestris Rybd.) in south western Alberta. Canadian Journal of Plant Science 85, 623–629.