Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Growth characteristics associated with biomass production in three varieties of Trichloris crinita (Poaceae), a forage grass native to the arid regions of Argentina

S. A. Greco A and J. B. Cavagnaro A B
+ Author Affiliations
- Author Affiliations

A Fac. Ciencias Agrarias. – Univ. Nacional de Cuyo. Alte Brown 500. Chacras de Coria. (5505) Mendoza, Argentina.

B Corresponding author. Email: bcavagnaro@fca.uncu.edu.ar

The Rangeland Journal 27(2) 135-142 https://doi.org/10.1071/RJ05011
Submitted: 15 September 2004  Accepted: 12 April 2005   Published: 21 November 2005

Abstract

Trichloris crinita (Lag.) Parodi is an important perennial native grass widespread in the range areas of the arid and semi-arid phytogeographical region of Monte, Argentina. Previous studies have shown great variability in forage biomass production per plant among different varieties of this species. The aim of this work was to assess which morphological and physiological traits are associated with differential productivity of T. crinita varieties. Three varieties: Pichi, of high productivity, Arroyito, of medium productivity, and Encon, of low productivity were tested in a field experiment. Dry matter (DM) produced by different organs, assimilates partitioning, and leaf area per plant were measured on three different dates for each variety, during an annual growth cycle, under watered conditions. Relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA), leaf weight ratio (LWR) and leaf area development rate (LADR) were calculated at 72, 128 and 172 days after transplanting. Significant differences among varieties were found for DM production of blades, sheaths + culms, panicles, roots and shoot/root ratio. Pichi and Arroyito produced more total plant biomass than Encon and this was associated with higher dry matter accumulation in aboveground organs and larger leaf area. LADR, LAR and one of its components SLA were the parameters that best explained differences in biomass production. DM partitioning to roots (considered as the percentage of total DM) was very high in Encon, the least productive variety. Differences in productivity seem to be directly associated with the mean annual rainfall and inversely associated with the mean annual temperature of the environment where plants were collected. Thus, the growth characteristics of each variety reflect differential adaptation to their areas of origin.

Additional keywords: intraspecific variability, partitioning, specific leaf area.


Acknowledgments

This research was supported by CONICET and Universidad Nacional de Cuyo, Argentina. We thank Dr A. H. Hall and Dr Kent Bradford for their comments on the manuscript. We are grateful to H. Morales for his valuable technical assistance, and to N. Horak, J. Lucero, M. Delugan and M. Paez for their kind collaboration.


References


Bohm, W. (1979). ‘Methods of studying root systems.’ (Springer-Verlag: Berlin.)

Boyer J. S. (1982) Plant productivity and environment. Science 218, 443–448. open url image1

Brouwer R., de Wit C. T. (1969) A simulation model of plant growth with special attention to root growth and its consequences. : ‘Root growth. Proceedings 15th Eastern School Agricultural Science’. University of Nottingham, UK. (Ed. W. J. Whitington ) pp. 224–242. (Butterworths: London.)


Cabrera A. (1976). Regiones fitogeográficas argentinas. In: ‘Encyclopedia Argentina de Agricultura y Jardineria’. (Ed. ACME, Bs. As) fasciculo I. (ACME: Buenos Aires.)

Caldwell M. M., Richards J. H., Johnson D. A., Nowak R. S., Dzurec R. S. (1981) Coping with herbivory: photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses. Oecologia 50, 14–24.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cavagnaro J. B. (1988) Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia 76, 273–277.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cavagnaro J. B., Lemes J., Ventura J. L., Passera C. B. (1989) Variabilidad ecotípica y producción forrajera de Trichloris crinita. : ‘Resúmenes 14th Congreso de Produccion Animal. (supl.1)’. (Asociacion Argentina de Produccion Animal: Buenos Aires.)


Dijkstra P., Lambers H. (1989) Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate. New Phytologist 113, 283–290. open url image1

Evans, G. C. (1972). ‘The quantitative analysis of plant growth.’ (Blackwell Scientific: London.)

Evans J. R., Poorter H. (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment 24, 755–767.
Crossref | GoogleScholarGoogle Scholar | open url image1

Fernández R. G., Reynolds J. F. (2000) Potential growth and drought tolerance of eight desert grasses: lack of trade off? Oecologia 123, 90–98.
Crossref | GoogleScholarGoogle Scholar | open url image1

Garnier E. (1992) Growth analysis of congeneric annual and perennial grass species. Journal of Ecology 80, 665–675. open url image1

Gifford R. M., Evans L. T. (1981) Photosynthesis, carbon partitioning and yield. Annual Review of Plant Physiology 32, 485–489.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gifford R. M., Thorne J. H., Hitz W. D., Giaquinta R. (1984) Crop productivity and photoassimilate partitioning. Science 225, 801–808. open url image1

Gleeson S., Tilman D. (1992) Plant allocation and the multiple limitation hypothesis. American Naturalist 139, 1322–1343.
Crossref | GoogleScholarGoogle Scholar | open url image1

Greco S. A., Cavagnaro J. B. (2003) Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecology 164, 125–135.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grime, J. P. (1979). ‘Plant strategies and vegetation processes.’ (John Wiley and Sons: New York)

Grime J. P., Hunt R. (1975) Relative growth-rate: its range and adaptive significance in a local flora. Journal of Ecology 63, 393–422. open url image1

Hall A. J. (1980) Los componentes fisiológicos del rendimiento de los cultivos. Revista de la Facultad de Agronomia de la Universidad de Buenos Aires 1, 73–86. open url image1

Hunt, R. (1978). ‘Plant growth analysis. Studies in biology no. 96.’ (Edward Arnold: London.)

Hunt R., Cornelissen J. H. C. (1997) Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytologist 135, 395–417.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jackson, M. L. (1964). ‘Análisis químico de suelos.’ 3a. edn. (Omega: Barcelona)

King, R. C. ,  and  Standfield, W. C. (1997). ‘A dictionary of genetics.’ (Oxford University Press: New York)

Lambers H. (1987) Does variation in photosynthetic rate explain variation in growth rate? Netherland Journal of Agricultural Science 35, 505–519. open url image1

Loomis, R. S. ,  and  Connor, D. J. (1992). ‘Crop ecology.’ (Cambridge University Press: Cambridge.)

McNaughton S. J. (1974) Developmental control of net productivity in Typha latifolia varieties. Ecology 55, 864–869. open url image1

Monteith J.L. (1977) Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society London B 281, 277–294. open url image1

Morello J. (1958) La provincia fitogeográfica del Monte. Opera Lilloana 2, 1–155. open url image1

Nasyrov Y. (1978) Genetic control of photosynthesis and improving of crop productivity. Annual Review of Plant Physiology 29, 215–237.
Crossref | GoogleScholarGoogle Scholar | open url image1

Orians G. H., Solbrig O. T. (1977) An evolutionary approach to ecosystems. : ‘Convergent evolution in warm deserts’. (Eds G. H. Orians, O. T. Solbrig) pp. 1–12. (Dowden, Hutchinson and Ross Inc.: Stroudsburg.)

Passera C., Cavagnaro J. B., Lemes J., Allegretti L. (1997) Gramíneas nativas de zonas áridas, banco de germoplasma y selección de ecotipos en el Monte, Argentina. Actae Etnobotánica [Córdoba, España] 92, 181–189. open url image1

Poorter H., Remkes C. (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83, 553–559.
Crossref | GoogleScholarGoogle Scholar | open url image1

Poorter H., Lambers H. (1991) Is interspecific variation in relative growth rate positively correlated with biomass allocation to the leaves? American Naturalist 138, 1264–1268.
Crossref | GoogleScholarGoogle Scholar | open url image1

Poorter H., van der Werf A., Atkin K., Lambers H. (1991) Respiratory energy requirements of roots vary with the potential growth rate of a plant species. Physiologia Plantarum 83, 469–475.
Crossref | GoogleScholarGoogle Scholar | open url image1

Poorter H., Pothmann P. (1992) Growth and carbon economy of fast-growing and slow-growing grass species as dependent on ontogeny. New Phytologist 120, 159–166. open url image1

Poorter H., Nagel O. (2000) The role of biomass allocation in the growth responses of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology 27, 595–607. open url image1

Poorter H., Evans J. R. (1998) Photosynthetic nitrogen use efficiency of species that differ inherently in specific leaf area. Oecologia 116, 26–37.
Crossref | GoogleScholarGoogle Scholar | open url image1

Reich P. B. (1998) Variation among plant species in leaf turnover rates and associated traits: implications for growth at all life stages. : ‘Inherent variation in plant growth. Physiological mechanisms and ecological consequences’. (Eds H. Lambers, H. Poorter, M. M. I. Van Vuren) pp. 476–487. (Backhuys: Leiden.)

Roig F. A. (1971) Flora y. vegetación de la Reserva Forestal de Ñacuñan. Deserta 1, 25–232. open url image1

Schulze E. D. (1983) Root–shoot interactions and plant life forms. Netherland Journal Agricultural Science 4, 291–303. open url image1

Schulze E. D., Mooney H. A., Sala O. E., Jobbagy E., Buchmann N. , et al. (1996) Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108, 503–511.
Crossref | GoogleScholarGoogle Scholar | open url image1

Seligman N., Cavagnaro J. B., Horno M. (1992) Simulation of defoliation effects on primary production of a warm season semiarid perennial species grassland. Ecological Modelling 60, 45–61.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tsunoda S. (1978) Adaptive differentiation in photosynthetic properties in wheat. : ‘Proceedings of 5th Internacional Wheat Genetics Symposium’. New Delhi, India


Turner N. C. (1979) Drought resistance and adaptation to water deficits in crop plants. : ‘Stress physiology in crop plants’. (Eds H. Mussell, R. C. Staples) pp. 343–372. (John Wiley and Sons: New York)

Waistein P., González S. (1969) Valor nutritivo de forrajeras del Este de la provincia de Mendoza, Reserva Ecológica de Ñacuñán. I. Revista Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. XV( ), 133–142. open url image1