Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Analysis of spermatogenesis and fertility in adult mice with a hypomorphic mutation in the Mtrr gene

Georgina E. T. Blake A B , Jessica Hall A , Grace E. Petkovic A and Erica D. Watson https://orcid.org/0000-0003-4496-2271 A B C
+ Author Affiliations
- Author Affiliations

A Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.

B Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.

C Corresponding author. Email: edw23@cam.ac.uk

Reproduction, Fertility and Development 31(11) 1730-1741 https://doi.org/10.1071/RD19064
Submitted: 20 February 2019  Accepted: 16 June 2019   Published: 20 September 2019

Abstract

Recent research has focussed on the significance of folate metabolism in male fertility. Knocking down the mouse gene Mtrr impedes the progression of folate and methionine metabolism and results in hyperhomocysteinaemia, dysregulation of DNA methylation and developmental phenotypes (e.g. neural tube, heart and placenta defects). The Mtrrgt mouse line is a model of transgenerational epigenetic inheritance (TEI), the hypothesised cause of which is the inheritance of a yet-to-be determined epigenetic factor via the germline. We investigated Mtrrgt/gt testes and sperm function compared with control C57Bl/6J testes to explore potential defects that might confound our understanding of TEI in the Mtrrgt model. Histological analysis revealed that adult Mtrrgt/gt testes are more spherical in shape than C57Bl/6J testes, though serum testosterone levels were normal and spermatogenesis progressed in a typical manner. Spermatozoa collected from the cauda epididymis showed normal morphology, counts, and viability in Mtrrgt/gt males. Correspondingly, Mtrrgt spermatozoa contributed to normal pregnancy rates. Similar parameters were assessed in Mtrr+/+ and Mtrr+/gt males, which were normal compared with controls. Overall, our data showed that the Mtrrgt allele is unlikely to alter spermatogenesis or male fertility. Therefore, it is improbable that these factors confound the mechanistic study of TEI in Mtrrgt mice.

Additional keywords: folate metabolism, folic acid, one-carbon metabolism, testes


References

A, Z. C., Yang, Y., Zhang, S. Z., Li, N., and Zhang, W. (2007). Single nucleotide polymorphism C677T in the methylenetetrahydrofolate reductase gene might be a genetic risk factor for infertility for Chinese men with azoospermia or severe oligozoospermia. Asian J. Androl. 9, 57–62.
Single nucleotide polymorphism C677T in the methylenetetrahydrofolate reductase gene might be a genetic risk factor for infertility for Chinese men with azoospermia or severe oligozoospermia.Crossref | GoogleScholarGoogle Scholar | 16888682PubMed |

Amabile, A., Migliara, A., Capasso, P., Biffi, M., Cittaro, D., Naldini, L., and Lombardo, A. (2016). Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14.
Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing.Crossref | GoogleScholarGoogle Scholar | 27662090PubMed |

Anawalt, B. D. (2013). Approach to male infertility and induction of spermatogenesis. J. Clin. Endocrinol. Metab. 98, 3532–3542.
Approach to male infertility and induction of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 24014811PubMed |

Bezold, G., Lange, M., and Peter, R. U. (2001). Homozygous methylenetetrahydrofolate reductase C677T mutation and male infertility. N. Engl. J. Med. 344, 1172–1173.
Homozygous methylenetetrahydrofolate reductase C677T mutation and male infertility.Crossref | GoogleScholarGoogle Scholar | 11302150PubMed |

Bistulfi, G., Vandette, E., Matsui, S., and Smiraglia, D. J. (2010). Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells. BMC Biol. 8, 6.
Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells.Crossref | GoogleScholarGoogle Scholar | 20092614PubMed |

Blake, G. E. T., and Watson, E. D. (2016). Unravelling the complex mechanisms of transgenerational epigenetic inheritance. Curr. Opin. Chem. Biol. 33, 101–107.
Unravelling the complex mechanisms of transgenerational epigenetic inheritance.Crossref | GoogleScholarGoogle Scholar |

Boxmeer, J. C., Smit, M., Utomo, E., Romijn, J. C., Eijkemans, M. J. C., Lindemans, J., Laven, J. S. E., Macklon, N. S., Steegers, E. A. P., and Steegers-Theunissen, R. P. M. (2009). Low folate in seminal plasma is associated with increased sperm DNA damage. Fertil. Steril. 92, 548–556.
Low folate in seminal plasma is associated with increased sperm DNA damage.Crossref | GoogleScholarGoogle Scholar | 18722602PubMed |

Chan, D., Cushnie, D. W., Neaga, O. R., Lawrance, A. K., Rozen, R., and Trasler, J. M. (2010). Strain-specific defects in testicular development and sperm epigenetic patterns in 5,10-methylenetetrahydrofolate reductase-deficient mice. Endocrinology 151, 3363–3373.
Strain-specific defects in testicular development and sperm epigenetic patterns in 5,10-methylenetetrahydrofolate reductase-deficient mice.Crossref | GoogleScholarGoogle Scholar | 20444942PubMed |

Dobosy, J. R., Fu, V. X., Desotelle, J. A., Srinivasan, R., Kenowski, M. L., Almassi, N., Weindruch, R., Svaren, J., and Jarrard, D. F. (2008). A methyl-deficient diet modifies histone methylation and alters Igf2 and H19 repression in the prostate. Prostate 68, 1187–1195.
A methyl-deficient diet modifies histone methylation and alters Igf2 and H19 repression in the prostate.Crossref | GoogleScholarGoogle Scholar | 18459101PubMed |

Ebisch, I. M., van Heerde, W. L., Thomas, C. M., van der Put, N., Wong, W. Y., and Steegers-Theunissen, R. P. (2003). C677T methylenetetrahydrofolate reductase polymorphism interferes with the effects of folic acid and zinc sulfate on sperm concentration. Fertil. Steril. 80, 1190–1194.
C677T methylenetetrahydrofolate reductase polymorphism interferes with the effects of folic acid and zinc sulfate on sperm concentration.Crossref | GoogleScholarGoogle Scholar | 14607573PubMed |

Ek, J. (1980). Plasma and red cell folate values in newborn infants and their mothers in relation to gestational age. J. Pediatr. 97, 288–292.
Plasma and red cell folate values in newborn infants and their mothers in relation to gestational age.Crossref | GoogleScholarGoogle Scholar | 7400900PubMed |

Elmore, C. L., Wu, X., Leclerc, D., Watson, E. D., Bottiglieri, T., Krupenko, N. I., Krupenko, S. A., Cross, J. C., Rozen, R., Gravel, R. A., and Matthews, R. G. (2007). Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase. Mol. Genet. Metab. 91, 85–97.
Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase.Crossref | GoogleScholarGoogle Scholar | 17369066PubMed |

Engin, A. B., and Engin, A. (2017). The interactions between kynurenine, folate, methionine and pteridine pathways in obesity. Adv. Exp. Med. Biol. 960, 511–527.
The interactions between kynurenine, folate, methionine and pteridine pathways in obesity.Crossref | GoogleScholarGoogle Scholar | 28585214PubMed |

Garner, J. L., Niles, K. M., McGraw, S., Yeh, J. R., Cushnie, D. W., Hermo, L., Nagano, M. C., and Trasler, J. M. (2013). Stability of DNA methylation patterns in mouse spermatogonia under conditions of MTHFR deficiency and methionine supplementation. Biol. Reprod. 89, 125.
Stability of DNA methylation patterns in mouse spermatogonia under conditions of MTHFR deficiency and methionine supplementation.Crossref | GoogleScholarGoogle Scholar | 24048573PubMed |

Gayon, J. (2000). History of the concept of allometry. Integr. Comp. Biol. 40, 748–758.

Ghandour, H., Lin, B.-F., Choi, S.-W., Mason, J. B., and Selhub, J. (2002). Folate status and age affect the accumulation of l-isoaspartyl residues in rat liver proteins. J. Nutr. 132, 1357–1360.
Folate status and age affect the accumulation of l-isoaspartyl residues in rat liver proteins.Crossref | GoogleScholarGoogle Scholar | 12042458PubMed |

Golshan Iranpour, F., and Rezazadeh Valojerdi, M. (2013). The epididymal sperm viability, motility and DNA integrity in dead mice maintained at 4–6°C. Iran. J. Reprod. Med. 11, 195–200.
| 24639746PubMed |

Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J., Pogribny, I. P., Miller, B. J., Henning, S. M., and Swendseid, M. E. (1998). Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J. Nutr. 128, 1204–1212.
Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women.Crossref | GoogleScholarGoogle Scholar | 9649607PubMed |

Kelly, T. L., Neaga, O. R., Schwahn, B. C., Rozen, R., and Trasler, J. M. (2005). Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol. Reprod. 72, 667–677.
Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation.Crossref | GoogleScholarGoogle Scholar | 15548731PubMed |

Kooistra, M., Trasler, J. M., and Baltz, J. M. (2013). Folate transport in mouse cumulus-oocyte complexes and preimplantation embryos. Biol. Reprod. 89, 63.
Folate transport in mouse cumulus-oocyte complexes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 23904512PubMed |

Lambrot, R., Xu, C., Saint-Phar, S., Chountalos, G., Cohen, T., Paquet, M., Suderman, M., Hallett, M., and Kimmins, S. (2013). Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 4, 2889.
Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 24326934PubMed |

Lee, H.-C., Jeong, Y.-M., Lee, S. H., Cha, K. Y., Song, S.-H., Kim, N. K., Lee, K. W., and Lee, S. (2006). Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility. Hum. Reprod. 21, 3162–3170.
Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility.Crossref | GoogleScholarGoogle Scholar | 16861746PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 11846609PubMed |

Meistrich, M. L., and Hess, R. A. (2013). Assessment of spermatogenesis through staging of seminiferous tubules. In ‘Spermatogenesis. Methods in Molecular Biology (Methods and Protocols)’. (Eds D. Carrell and K. Aston.) pp. 299–308. (Humana Press: Totowa, NJ.)

Mfady, D. S., Sadiq, M. F., Khabour, O. F., Fararjeh, A. S., Abu-Awad, A., and Khader, Y. (2014). Associations of variants in MTHFR and MTRR genes with male infertility in the Jordanian population. Gene 536, 40–44.
Associations of variants in MTHFR and MTRR genes with male infertility in the Jordanian population.Crossref | GoogleScholarGoogle Scholar | 24334125PubMed |

Montjean, D., Benkhalifa, M., Dessolle, L., Cohen-Bacrie, P., Belloc, S., Siffroi, J. P., Ravel, C., Bashamboo, A., and McElreavey, K. (2011). Polymorphisms in MTHFR and MTRR genes associated with blood plasma homocysteine concentration and sperm counts. Fertil. Steril. 95, 635–640.
Polymorphisms in MTHFR and MTRR genes associated with blood plasma homocysteine concentration and sperm counts.Crossref | GoogleScholarGoogle Scholar | 20888556PubMed |

Murphy, L. E., Mills, J. L., Molloy, A. M., Qian, C., Carter, T. C., Strevens, H., Wide-Swensson, D., Giwercman, A., and Levine, R. J. (2011). Folate and vitamin B(12) in idiopathic male infertility. Asian J. Androl. 13, 856–861.
Folate and vitamin B(12) in idiopathic male infertility.Crossref | GoogleScholarGoogle Scholar | 21857689PubMed |

Ni, W., Li, H., Wu, A., Zhang, P., Yang, H., Yang, X., Huang, X., and Jiang, L. (2015). Lack of association between genetic polymorphisms in three folate-related enzyme genes and male infertility in the Chinese population. J. Assist. Reprod. Genet. 32, 369–374.
Lack of association between genetic polymorphisms in three folate-related enzyme genes and male infertility in the Chinese population.Crossref | GoogleScholarGoogle Scholar | 25578539PubMed |

Padmanabhan, N., Jia, D., Geary-Joo, C., Wu, X., Ferguson-Smith, A. C., Fung, E., Bieda, M. C., Snyder, F. F., Gravel, R. A., Cross, J. C., and Watson, E. D. (2013). Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81–93.
Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development.Crossref | GoogleScholarGoogle Scholar | 24074862PubMed |

Rameix-Welti, M. A., Le Goffic, R., Herve, P. L., Sourimant, J., Remot, A., Riffault, S., Yu, Q., Galloux, M., Gault, E., and Eleouet, J. F. (2014). Visualizing the replication of respiratory syncytial virus in cells and in living mice. Nat. Commun. 5, 5104.
Visualizing the replication of respiratory syncytial virus in cells and in living mice.Crossref | GoogleScholarGoogle Scholar | 25277263PubMed |

Shane, B., and Stokstad, E. L. (1985). Vitamin B12-folate interrelationships. Annu. Rev. Nutr. 5, 115–141.
Vitamin B12-folate interrelationships.Crossref | GoogleScholarGoogle Scholar | 3927946PubMed |

Sharpe, R. M. (2006). Perinatal determinants of adult testis size and function. J. Clin. Endocrinol. Metab. 91, 2503–2505.
Perinatal determinants of adult testis size and function.Crossref | GoogleScholarGoogle Scholar | 16825576PubMed |

Singh, K., and Jaiswal, D. (2013). One-carbon metabolism, spermatogenesis, and male infertility. Reprod. Sci. 20, 622–630.
One-carbon metabolism, spermatogenesis, and male infertility.Crossref | GoogleScholarGoogle Scholar | 23138010PubMed |

Smith, L. B., and Walker, W. H. (2014). The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 30, 2–13.
The regulation of spermatogenesis by androgens.Crossref | GoogleScholarGoogle Scholar | 24598768PubMed |

Smith, D. E., Kok, R. M., Teerlink, T., Jakobs, C., and Smulders, Y. M. (2006). Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography–tandem mass spectrometry. Clin. Chem. Lab. Med. 44, 450–459.
Quantitative determination of erythrocyte folate vitamer distribution by liquid chromatography–tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 16599840PubMed |

Svingen, T., and Koopman, P. (2013). Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 27, 2409–2426.
Building the mammalian testis: origins, differentiation, and assembly of the component cell populations.Crossref | GoogleScholarGoogle Scholar | 24240231PubMed |

Swanson, D. A., Liu, M. L., Baker, P. J., Garrett, L., Stitzel, M., Wu, J., Harris, M., Banerjee, R., Shane, B., and Brody, L. C. (2001). Targeted disruption of the methionine synthase gene in mice. Mol. Cell. Biol. 21, 1058–1065.
Targeted disruption of the methionine synthase gene in mice.Crossref | GoogleScholarGoogle Scholar | 11158293PubMed |

Uthus, E. O., and Brown-Borg, H. M. (2006). Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech. Ageing Dev. 127, 444–450.
Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse.Crossref | GoogleScholarGoogle Scholar | 16519922PubMed |

Vasta, V., Shimizu-Albergine, M., and Beavo, J. A. (2006). Modulation of Leydig cell function by cyclic nucleotide phosphodiesterase 8A. Proc. Natl Acad. Sci. USA 103, 19925–19930.
Modulation of Leydig cell function by cyclic nucleotide phosphodiesterase 8A.Crossref | GoogleScholarGoogle Scholar | 17172443PubMed |

Wainfan, E., Moller, M. L., Maschio, F. A., and Balis, M. E. (1975). Ethionine-induced changes in rat liver transfer RNA methylation. Cancer Res. 35, 2830–2835.
| 1157052PubMed |

Wainwright, E. N., Svingen, T., Ng, E. T., Wicking, C., and Koopman, P. (2014). Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev. Biol. 395, 342–354.
Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice.Crossref | GoogleScholarGoogle Scholar | 25224227PubMed |

Wallock, L. M., Tamura, T., Mayr, C. A., Johnston, K. E., Ames, B. N., and Jacob, R. A. (2001). Low seminal plasma folate concentrations are associated with low sperm density and count in male smokers and nonsmokers. Fertil. Steril. 75, 252–259.
Low seminal plasma folate concentrations are associated with low sperm density and count in male smokers and nonsmokers.Crossref | GoogleScholarGoogle Scholar | 11172823PubMed |

Wang, Y. (2002). Epididymal sperm count. Curr. Protoc. Toxicol. 14, 16.6.1–16.6.5.

Wasson, G. R., McGlynn, A. P., McNulty, H., O’Reilly, S. L., McKelvey-Martin, V. J., McKerr, G., Strain, J. J., Scott, J., and Downes, C. S. (2006). Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. J. Nutr. 136, 2748–2753.
Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation.Crossref | GoogleScholarGoogle Scholar | 17056795PubMed |

Waterland, R. A., Dolinoy, D. C., Lin, J. R., Smith, C. A., Shi, X., and Tahiliani, K. G. (2006). Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44, 401–406.
Maternal methyl supplements increase offspring DNA methylation at Axin Fused.Crossref | GoogleScholarGoogle Scholar | 16868943PubMed |

Wong, W. Y., Merkus, H. M., Thomas, C. M., Menkveld, R., Zielhuis, G. A., and Steegers-Theunissen, R. P. (2002). Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertil. Steril. 77, 491–498.
Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial.Crossref | GoogleScholarGoogle Scholar | 11872201PubMed |

Wyrobek, A. J., Gordon, L. A., Burkhart, J. G., Francis, M. W., Kapp, R. W., Letz, G., Malling, H. V., Topham, J. C., and Whorton, M. D. (1983). An evaluation of the mouse sperm morphology test and other sperm tests in nonhuman mammals. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat. Res. 115, 1–72.
An evaluation of the mouse sperm morphology test and other sperm tests in nonhuman mammals. A report of the U.S. Environmental Protection Agency Gene-Tox Program.Crossref | GoogleScholarGoogle Scholar | 6835246PubMed |

Xu, J., and Sinclair, K. D. (2015). One-carbon metabolism and epigenetic regulation of embryo development. Reprod. Fertil. Dev. 27, 667–676.
One-carbon metabolism and epigenetic regulation of embryo development.Crossref | GoogleScholarGoogle Scholar | 25710200PubMed |

Yamada, K., Gravel, R. A., Toraya, T., and Matthews, R. G. (2006). Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc. Natl Acad. Sci. USA 103, 9476–9481.
Human methionine synthase reductase is a molecular chaperone for human methionine synthase.Crossref | GoogleScholarGoogle Scholar | 16769880PubMed |