Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Bovine gonadotrophs express anti-Müllerian hormone (AMH): comparison of AMH mRNA and protein expression levels between old Holsteins and young and old Japanese Black females

Onalenna Kereilwe A and Hiroya Kadokawa https://orcid.org/0000-0002-8454-9601 A B
+ Author Affiliations
- Author Affiliations

A Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan.

B Corresponding author. Email: hiroya@yamaguchi-u.ac.jp

Reproduction, Fertility and Development 31(4) 810-819 https://doi.org/10.1071/RD18341
Submitted: 23 August 2018  Accepted: 26 November 2018   Published: 17 December 2018

Abstract

Anti-Müllerian hormone (AMH) is secreted from ovaries and stimulates gonadotrophin secretion from bovine gonadotroph cells. Other important hormones for endocrinological gonadotroph regulation (e.g. gonadotrophin-releasing hormone, inhibin and activin) have paracrine and autocrine roles. Therefore, in this study, AMH expression in bovine gonadotroph cells and the relationships between AMH expression in the bovine anterior pituitary (AP) and oestrous stage, age and breed were evaluated. AMH mRNA expression was detected in APs of postpubertal heifers (26 months old) by reverse transcription-polymerase chain reaction. Based on western blotting using an antibody to mature C-terminal AMH, AMH protein expression was detected in APs. Immunofluorescence microscopy utilising the same antibody indicated that AMH is expressed in gonadotrophs. The expression of AMH mRNA and protein in APs did not differ between oestrous phases (P > 0.1). We compared expression levels between old Holsteins (79.2 ± 10.3 months old) and young (25.9 ± 0.6 months old) and old Japanese Black females (89.7 ± 20.3 months old). The APs of old Holsteins exhibited lower AMH mRNA levels (P < 0.05) but higher AMH protein levels than those of young Japanese Black females (P < 0.05). In conclusion, bovine gonadotrophs express AMH and this AMH expression may be breed-dependent.

Additional keywords: age, anterior pituitary, breed, Müllerian-inhibiting substance, ruminants, TGF-β superfamily.


References

Adamczyk, K., Makulska, J., Jagusiak, W., and Weglarz, A. (2017). Associations between strain, herd size, age at first calving, culling reason and lifetime performance characteristics in Holstein–Friesian cows. Animal 11, 327–334.
Associations between strain, herd size, age at first calving, culling reason and lifetime performance characteristics in Holstein–Friesian cows.Crossref | GoogleScholarGoogle Scholar |

Bédécarrats, G. Y., O’Neill, F. H., Norwitz, E. R., Kaiser, U. B., and Teixeira, J. (2003). Regulation of gonadotropin gene expression by Müllerian inhibiting substance. Proc. Natl. Acad. Sci. USA 100, 9348–9353.
Regulation of gonadotropin gene expression by Müllerian inhibiting substance.Crossref | GoogleScholarGoogle Scholar |

Bhide, P., and Homburg, R. (2016). Anti-Müllerian hormone and polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 37, 38–45.
Anti-Müllerian hormone and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |

Borromeo, V., Amsterdam, A., Berrini, A., Gaggioli, D., Dantes, A., and Secchi, C. (2004). Characterization of biologically active bovine pituitary FSH purified by immunoaffinity chromatography using a monoclonal antibody. Gen. Comp. Endocrinol. 139, 179–189.
Characterization of biologically active bovine pituitary FSH purified by immunoaffinity chromatography using a monoclonal antibody.Crossref | GoogleScholarGoogle Scholar |

Campbell, B. K., Clinton, M., and Webb, R. (2012). The role of anti-Müllerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology 153, 4533–4543.
The role of anti-Müllerian hormone (AMH) during follicle development in a monovulatory species (sheep).Crossref | GoogleScholarGoogle Scholar |

de Kretser, D. M., Hedger, M. P., Loveland, K. L., and Phillips, D. J. (2002). Inhibins, activins and follistatin in reproduction. Hum. Reprod. Update 8, 529–541.
Inhibins, activins and follistatin in reproduction.Crossref | GoogleScholarGoogle Scholar |

Dewailly, D., Andersen, C. Y., Balen, A., Broekmans, F., Dilaver, N., Fanchin, R., Griesinger, G., Kelsey, T. W., La Marca, A., Lambalk, C., Mason, H., Nelson, S. M., Visser, J. A., Wallace, W. H., and Anderson, R. A. (2014). The physiology and clinical utility of anti-Müllerian hormone in women. Hum. Reprod. Update 20, 370–385.
The physiology and clinical utility of anti-Müllerian hormone in women.Crossref | GoogleScholarGoogle Scholar |

di Clemente, N., Jamin, S. P., Lugovskoy, A., Carmillo, P., Ehrenfels, C., Picard, J. Y., and Cate, R. L. (2010). Processing of anti-Müllerian hormone regulates receptor activation by a mechanism distinct from TGF-β. Mol. Endocrinol. 24, 2193–2206.
Processing of anti-Müllerian hormone regulates receptor activation by a mechanism distinct from TGF-β.Crossref | GoogleScholarGoogle Scholar |

El-Sheikh Ali, H., Kitahara, G., Nibe, K., Yamaguchi, R., Horii, Y., Zaabel, S., and Osawa, T. (2013). Plasma anti-Müllerian hormone as a biomarker for bovine granulosa–theca cell tumors: comparison with immunoreactive inhibin and ovarian steroid concentrations. Theriogenology 80, 940–949.
Plasma anti-Müllerian hormone as a biomarker for bovine granulosa–theca cell tumors: comparison with immunoreactive inhibin and ovarian steroid concentrations.Crossref | GoogleScholarGoogle Scholar |

Garrel, G., Racine, C., L’Hôte, D., Denoyelle, C., Guigon, C. J., di Clemente, N., and Cohen-Tannoudji, J. (2016). Anti-Müllerian hormone: a new actor of sexual dimorphism in pituitary gonadotrope activity before puberty. Sci. Rep. 6, 23790.
Anti-Müllerian hormone: a new actor of sexual dimorphism in pituitary gonadotrope activity before puberty.Crossref | GoogleScholarGoogle Scholar |

Gernand, E., and Konig, S. (2017). Genetic relationships among female fertility disorders, female fertility traits and productivity of Holstein dairy cows in the early lactation period. J. Anim. Breed. Genet. 134, 353–363.
Genetic relationships among female fertility disorders, female fertility traits and productivity of Holstein dairy cows in the early lactation period.Crossref | GoogleScholarGoogle Scholar |

Geserick, C., Meyer, H. A., and Haendler, B. (2005). The role of DNA response elements as allosteric modulators of steroid receptor function. Mol. Cell. Endocrinol. 236, 1–7.
The role of DNA response elements as allosteric modulators of steroid receptor function.Crossref | GoogleScholarGoogle Scholar |

Gruber, C. J., Gruber, D. M., Gruber, I. M., Wieser, F., and Huber, J. C. (2004). Anatomy of the estrogen response element. Trends Endocrinol. Metab. 15, 73–78.
Anatomy of the estrogen response element.Crossref | GoogleScholarGoogle Scholar |

Hernandez-Medrano, J. H., Campbell, B. K., and Webb, R. (2012). Nutritional influences on folliculogenesis. Reprod. Domest. Anim. 47, 274–282.
Nutritional influences on folliculogenesis.Crossref | GoogleScholarGoogle Scholar |

Iqbal, J., Latchoumanin, O., Sari, I. P., Lang, R. J., Coleman, H. A., Parkington, H. C., and Clarke, I. J. (2009). Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release. Endocrinology 150, 4213–4220.
Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release.Crossref | GoogleScholarGoogle Scholar |

Ireland, J. L., Scheetz, D., Jimenez-Krassel, F., Themmen, A. P., Ward, F., Lonergan, P., Smith, G. W., Perez, G. I., Evans, A. C., and Ireland, J. J. (2008). Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol. Reprod. 79, 1219–1225.
Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle.Crossref | GoogleScholarGoogle Scholar |

Kadokawa, H., and Martin, G. B. (2006). A new perspective on management of reproduction in dairy cows: the need for detailed metabolic information, an improved selection index and extended lactation. J. Reprod. Dev. 52, 161–168.
A new perspective on management of reproduction in dairy cows: the need for detailed metabolic information, an improved selection index and extended lactation.Crossref | GoogleScholarGoogle Scholar |

Kadokawa, H., Pandey, K., Nahar, A., Nakamura, U., and Rudolf, F. O. (2014). Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and are increased by elevated GnRH concentrations. Anim. Reprod. Sci. 150, 84–95.
Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and are increased by elevated GnRH concentrations.Crossref | GoogleScholarGoogle Scholar |

Kamomae, H. (2012). Reproductive disturbance. In ‘Veterinary Theriogenology’. (Eds T. Nakao, S. Tsumagari and S. Katagiri.) pp. 283–340. (Buneidou Press: Tokyo, Japan.) [In Japanese]

Kereilwe, O., Pandey, K., Borromeo, V., and Kadokawa, H. (2018). Anti-Müllerian hormone receptor type 2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion. Reprod. Fertil. Dev. 30, 1192–1203.
Anti-Müllerian hormone receptor type 2 is expressed in gonadotrophs of postpubertal heifers to control gonadotrophin secretion.Crossref | GoogleScholarGoogle Scholar |

Koizumi, M., and Kadokawa, H. (2017). Positive correlations of age and parity with plasma anti-Müllerian hormone concentrations in Japanese Black cows. J. Reprod. Dev. 63, 205–209.
Positive correlations of age and parity with plasma anti-Müllerian hormone concentrations in Japanese Black cows.Crossref | GoogleScholarGoogle Scholar |

Mamsen, L. S., Petersen, T. S., Jeppesen, J. V., Møllgard, K., Grøndahl, M. L., Larsen, A., Ernst, E., Oxvig, C., Kumar, A., Kalra, B., and Andersen, C. Y. (2015). Proteolytic processing of anti-Müllerian hormone differs between human fetal testes and adult ovaries. Mol. Hum. Reprod. 21, 571–582.
Proteolytic processing of anti-Müllerian hormone differs between human fetal testes and adult ovaries.Crossref | GoogleScholarGoogle Scholar |

Matteri, R. L., Roser, J. F., Baldwin, D. M., Lipovetsky, V., and Papkoff, H. (1987). Characterization of a monoclonal antibody which detects luteinizing hormone from diverse mammalian species. Domest. Anim. Endocrinol. 4, 157–165.
Characterization of a monoclonal antibody which detects luteinizing hormone from diverse mammalian species.Crossref | GoogleScholarGoogle Scholar |

Medzihradszky, K. F., Kaasik, K., and Chalkley, R. J. (2015). Tissue-specific glycosylation at the glycopeptide level. Mol. Cell. Proteomics 14, 2103–2110.
Tissue-specific glycosylation at the glycopeptide level.Crossref | GoogleScholarGoogle Scholar |

Miller, G. M., Alexander, J. M., and Klibanski, A. (1996). Gonadotropin-releasing hormone messenger RNA expression in gonadotroph tumors and normal human pituitary. J. Clin. Endocrinol. Metab. 81, 80–83.
Gonadotropin-releasing hormone messenger RNA expression in gonadotroph tumors and normal human pituitary.Crossref | GoogleScholarGoogle Scholar |

Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2000). Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol. Reprod. 62, 1109–1115.
Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?Crossref | GoogleScholarGoogle Scholar |

Monniaux, D., Baril, G., Laine, A. L., Jarrier, P., Poulin, N., Cognié, J., and Fabre, S. (2011). Anti-Müllerian hormone as a predictive endocrine marker for embryo production in the goat. Reproduction 142, 845–854.
Anti-Müllerian hormone as a predictive endocrine marker for embryo production in the goat.Crossref | GoogleScholarGoogle Scholar |

Nett, T. M., Cermak, D., Braden, T., Manns, J., and Niswender, G. (1987). Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domest. Anim. Endocrinol. 4, 123–132.
Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle.Crossref | GoogleScholarGoogle Scholar |

Osoro, K., and Wright, I. A. (1992). The effect of body condition, live weight, breed, age, calf performance, and calving date on reproductive performance of spring-calving beef cows. J. Anim. Sci. 70, 1661–1666.
The effect of body condition, live weight, breed, age, calf performance, and calving date on reproductive performance of spring-calving beef cows.Crossref | GoogleScholarGoogle Scholar |

Pagesy, P., Li, J. Y., Berthet, M., and Peillon, F. (1992). Evidence of gonadotropin-releasing hormone mRNA in the rat anterior pituitary. Mol. Endocrinol. 6, 523–528.
Evidence of gonadotropin-releasing hormone mRNA in the rat anterior pituitary.Crossref | GoogleScholarGoogle Scholar |

Pals, K., Roudbaraki, M., and Denef, C. (2008). Growth hormone-releasing hormone and glucocorticoids determine the balance between luteinising hormone (LH) beta- and LH beta/follicle-stimulating hormone beta-positive gonadotrophs and somatotrophs in the 14-day-old rat pituitary tissue in aggregate cell culture. J. Neuroendocrinol. 20, 535–548.
Growth hormone-releasing hormone and glucocorticoids determine the balance between luteinising hormone (LH) beta- and LH beta/follicle-stimulating hormone beta-positive gonadotrophs and somatotrophs in the 14-day-old rat pituitary tissue in aggregate cell culture.Crossref | GoogleScholarGoogle Scholar |

Pandey, K., Kereilwe, O., Borromeo, V., and Kadokawa, H. (2017a). Heifers express G-protein coupled receptor 61 in anterior pituitary gonadotrophs in stage-dependent manner. Anim. Reprod. Sci. 181, 93–102.
Heifers express G-protein coupled receptor 61 in anterior pituitary gonadotrophs in stage-dependent manner.Crossref | GoogleScholarGoogle Scholar |

Pandey, K., Mizukami, Y., Watanabe, K., Sakaguti, S., and Kadokawa, H. (2017b). Deep sequencing of the transcriptome in the anterior pituitary of heifers before and after ovulation. J. Vet. Med. Sci. 79, 1003–1012.
Deep sequencing of the transcriptome in the anterior pituitary of heifers before and after ovulation.Crossref | GoogleScholarGoogle Scholar |

Pandey, K., Kereilwe, O., and Kadokawa, H. (2018). Heifers express G-protein coupled receptor 153 in anterior pituitary gonadotrophs in stage-dependent manner. Anim. Sci. J. 89, 60–71.
Heifers express G-protein coupled receptor 153 in anterior pituitary gonadotrophs in stage-dependent manner.Crossref | GoogleScholarGoogle Scholar |

Pfeiffer, K. E., Jury, L. J., and Larson, J. E. (2014). Determination of anti-Müllerian hormone at estrus during a synchronized and a natural bovine estrous cycle. Domest. Anim. Endocrinol. 46, 58–64.
Determination of anti-Müllerian hormone at estrus during a synchronized and a natural bovine estrous cycle.Crossref | GoogleScholarGoogle Scholar |

Pierre, A., Racine, C., Rey, R. A., Fanchin, R., Taieb, J., Cohen-Tannoudji, J., Carmillo, P., Pepinsky, R. B., Cate, R. L., and di Clemente, N. (2016). Most cleaved anti-Müllerian hormone binds its receptor in human follicular fluid but little is competent in serum. J. Clin. Endocrinol. Metab. 101, 4618–4627.
Most cleaved anti-Müllerian hormone binds its receptor in human follicular fluid but little is competent in serum.Crossref | GoogleScholarGoogle Scholar |

Pinto, P. H. N., Balaro, M. F. A., Souza-Fabjan, J. M. G., Ribeiro, L. D. S., Bragança, G. M., Leite, C. R., Arashiro, E. K. N., de Moraes, S. K., Da Fonseca, J. F., and Brandão, F. Z. (2018). Anti-Müllerian hormone and antral follicle count are more effective for selecting ewes with good potential for in vivo embryo production than the presence of FecGE mutation or eCG pre-selection tests. Theriogenology 113, 146–152.
Anti-Müllerian hormone and antral follicle count are more effective for selecting ewes with good potential for in vivo embryo production than the presence of FecGE mutation or eCG pre-selection tests.Crossref | GoogleScholarGoogle Scholar |

Poonlaphdecha, S., Pepey, E., Huang, S. H., Canonne, M., Soler, L., Mortaji, S., Morand, S., Pfennig, F., Melard, C., Baroiller, J. F., and D’Cotta, H. (2011). Elevated AMH gene expression in the brain of male tilapia (Oreochromis niloticus) during testis differentiation. Sex Dev. 5, 33–47.
Elevated AMH gene expression in the brain of male tilapia (Oreochromis niloticus) during testis differentiation.Crossref | GoogleScholarGoogle Scholar |

Popovics, P., Rekasi, Z., Stewart, A. J., and Kovacs, M. (2011). Regulation of pituitary inhibin/activin subunits and follistatin gene expression by GnRH in female rats. J. Endocrinol. 210, 71–79.
Regulation of pituitary inhibin/activin subunits and follistatin gene expression by GnRH in female rats.Crossref | GoogleScholarGoogle Scholar |

Rekawiecki, R., Rutkowska, J., and Kotwica, J. (2012). Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod. Biol. 12, 362–367.
Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, E. S., Bisinotto, R. S., Lima, F. S., Greco, L. F., Morrison, A., Kumar, A., Thatcher, W. W., and Santos, J. E. (2014). Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility. J. Dairy Sci. 97, 6888–6900.
Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility.Crossref | GoogleScholarGoogle Scholar |

Rocha, R. M., Lima, L. F., Carvalho, A. A., Chaves, R. N., Bernuci, M. P., Rosa-e-Silva, A. C., Rodrigues, A. P., Campello, C. C., and Figueiredo, J. R. (2016). Immunolocalization of the anti-Müllerian hormone (AMH) in caprine follicles and the effects of AMH on in vitro culture of caprine pre-antral follicles enclosed in ovarian tissue. Reprod. Domest. Anim. 51, 212–219.
Immunolocalization of the anti-Müllerian hormone (AMH) in caprine follicles and the effects of AMH on in vitro culture of caprine pre-antral follicles enclosed in ovarian tissue.Crossref | GoogleScholarGoogle Scholar |

Rudolf, F. O., and Kadokawa, H. (2014). Effects of STX, a novel estrogen membrane receptor agonist, on GnRH-induced luteinizing hormone secretion from cultured bovine anterior pituitary cells. J. Vet. Med. Sci. 76, 1623–1625.
Effects of STX, a novel estrogen membrane receptor agonist, on GnRH-induced luteinizing hormone secretion from cultured bovine anterior pituitary cells.Crossref | GoogleScholarGoogle Scholar |

Seifer, D. B., and Merhi, Z. (2014). Is AMH a regulator of follicular atresia? J. Assist. Reprod. Genet. 31, 1403–1407.
Is AMH a regulator of follicular atresia?Crossref | GoogleScholarGoogle Scholar |

Sheldon, I. M., and Dobson, H. (2004). Postpartum uterine health in cattle. Anim. Reprod. Sci. 82–83, 295–306.
Postpartum uterine health in cattle.Crossref | GoogleScholarGoogle Scholar |

Skaar, K. S., Nobrega, R. H., Magaraki, A., Olsen, L. C., Schulz, R. W., and Male, R. (2011). Proteolytically activated, recombinant anti Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures. Endocrinology 152, 3527–3540.
Proteolytically activated, recombinant anti Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of spermatogonia in adult zebrafish testis organ cultures.Crossref | GoogleScholarGoogle Scholar |

Townsend, J., Sneddon, C. L., and Tortonese, D. J. (2004). Gonadotroph heterogeneity, density and distribution, and gonadotroph­–lactotroph associations in the pars distalis of the male equine pituitary gland. J. Neuroendocrinol. 16, 432–440.
Gonadotroph heterogeneity, density and distribution, and gonadotroph­–lactotroph associations in the pars distalis of the male equine pituitary gland.Crossref | GoogleScholarGoogle Scholar |

Walker, C. G., Meier, S., Mitchell, M. D., Roche, J. R., and Littlejohn, M. (2009). Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium. BMC Mol. Biol. 10, 100.
Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium.Crossref | GoogleScholarGoogle Scholar |