Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

2-Methoxyoestradiol impairs mouse embryo implantation via F-spondin

Emanuel Guajardo-Correa A B , Denisse Mena-Silva A B , Patricia Diaz A B , Carlos Godoy-Guzmán C , Hugo Cardenas A B and Pedro A. Orihuela https://orcid.org/0000-0002-4238-0932 A B D
+ Author Affiliations
- Author Affiliations

A Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile.

B Centro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA.

C Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Casilla 40, Correo 33, Chile.

D Corresponding author. Email: pedro.orihuela@usach.cl

Reproduction, Fertility and Development 31(4) 689-697 https://doi.org/10.1071/RD18114
Submitted: 24 March 2018  Accepted: 17 October 2018   Published: 19 November 2018

Abstract

The anti-implantation effects of high oestradiol (E2) concentrations could be mediated by E2 metabolites. Herein, we examined whether 2-methoxyoestradiol (2ME) impairs embryo implantation via its target protein F-spondin. Mice on Day 3 of pregnancy were treated with E2 concomitantly with the cathecol-O-methyl transferase inhibitor OR486 and the number of implanted embryos was recorded 5 days later. The effect of 2ME or 4-methoxyoestradiol (4ME) on embryo implantation was also investigated. Plasma and uterine levels of 2ME were measured 0.5, 1 or 3 h after E2 treatment while the mRNA for spondin 1 (Spon1) and F-spondin were determined in the uterus 3, 6, 12 or 24 h after 2ME treatment. Finally, the effect of a neutralising F-spondin antibody on the anti-implantation effect of 2ME was explored. OR486 blocked the anti-implantation effect of E2; 2ME, but not 4ME, affected embryo implantation. The 2ME concentration was increased after 0.5 and 1 h in plasma and 3 h in uterine fluid following E2 treatment. 2ME increased levels of Spon1 at 12 and 24 h although F-spondin was increased at 12 h. F-spondin antibody blocked the effect of 2ME on embryo implantation. We conclude that 2ME impairs mouse embryo implantation via activation of F-spondin in the uterus.

Additional keywords: blastocyst, cathechol-O-methyltransferase, hyperoestrogenic, oestradiol, oestrogen metobolites, uterine fluid.


References

Adams, J. C., and Tucker, R. P. (2000). The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev. Dyn. 218, 280–299.
The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development.Crossref | GoogleScholarGoogle Scholar |

Barnes, C. M., McElrath, T. F., Folkman, J., and Hansen, A. R. (2010). Correlation of 2-methoxyestradiol levels in cord blood and complications of prematurity. Pediatr. Res. 67, 545–550.
Correlation of 2-methoxyestradiol levels in cord blood and complications of prematurity.Crossref | GoogleScholarGoogle Scholar |

Bunyagidj, C., and McLachlan, J. A. (1988). Catechol estrogen formation in mouse uterus. J. Steroid Biochem. 31, 795–801.
Catechol estrogen formation in mouse uterus.Crossref | GoogleScholarGoogle Scholar |

Burstyn-Cohen, T., Tzarfaty, V., Frumkin, A., Feinstein, Y., Stoeckli, E., and Klar, A. (1999). F-spondin is required for accurate pathfinding of commissural axons at the floor plate. Neuron 23, 233–246.
F-spondin is required for accurate pathfinding of commissural axons at the floor plate.Crossref | GoogleScholarGoogle Scholar |

Caniggia, I., Mostachfi, H., Winter, J., Gassmann, M., Lye, S. J., Kuliszewski, M., and Post, M. (2000). Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta. J. Clin. Invest. 105, 577–587.
Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta.Crossref | GoogleScholarGoogle Scholar |

Carson, D. D., Bagchi, I., Dey, S. K., Enders, A. C., Fazleabas, A. T., Lessey, B. A., and Yoshinaga, K. (2000). Embryo implantation. Dev. Biol. 223, 217–237.
Embryo implantation.Crossref | GoogleScholarGoogle Scholar |

Chatuphonprasert, W., Jarukamjorn, K., and Putalun, W. (2016). Regulation of cancer-related genes – Cyp1a1, Cyp1b1, Cyp19, Nqo1 and Comt – expression in β-naphthoflavone-treated mice by miroestrol. J. Pharm. Pharmacol. 68, 475–484.
Regulation of cancer-related genes – Cyp1a1, Cyp1b1, Cyp19, Nqo1 and Comt – expression in β-naphthoflavone-treated mice by miroestrol.Crossref | GoogleScholarGoogle Scholar |

Choudhary, D., Jansson, I., Schenkman, J. B., Sarfarazi, M., and Stoilov, I. (2003). Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch. Biochem. Biophys. 414, 91–100.
Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues.Crossref | GoogleScholarGoogle Scholar |

Dehennin, L., Blacker, C., Reiffsteck, A., and Scholler, R. (1984). Estrogen 2-, 4-, 6- or 16-hydroxylation by human follicles shown by gas chromatography–mass spectrometry associated with stable isotope dilution. J. Steroid Biochem. 20, 465–471.
Estrogen 2-, 4-, 6- or 16-hydroxylation by human follicles shown by gas chromatography–mass spectrometry associated with stable isotope dilution.Crossref | GoogleScholarGoogle Scholar |

Deng, S., Xu, J., Zeng, J., Hu, L., and Wu, Y. (2013). Ovarian stimulation leads to a severe implantation defect in mice. Reprod. Biomed. Online 27, 172–175.
Ovarian stimulation leads to a severe implantation defect in mice.Crossref | GoogleScholarGoogle Scholar |

Hou, Q., Paria, B. C., Mui, C., Dey, S. K., and Gorski, J. (1996). Inmunolocalization of estrogen receptor protein in the mouse blastocyst during normal and delayed implantation. Proc. Natl. Acad. Sci. USA 93, 2376–2381.
Inmunolocalization of estrogen receptor protein in the mouse blastocyst during normal and delayed implantation.Crossref | GoogleScholarGoogle Scholar |

Hurh, Y. J., Chen, Z. H., Na, H. K., Han, S. Y., and Surh, Y. J. (2004). 2-hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells. J. Toxicol. Environ. Health A 67, 1939–1953.
2-hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar |

Kohen, P., Henríquez, S., Rojas, C., Gerk, P. M., Palomino, W. A., Strauss, J. F., and Devoto, L. (2013). 2-Methoxyestradiol in the human corpus luteum throughout the luteal phase and its influence on lutein cell steroidogenesis and angiogenic activity. Fertil. Steril. 100, 1397–1404.e1.
2-Methoxyestradiol in the human corpus luteum throughout the luteal phase and its influence on lutein cell steroidogenesis and angiogenic activity.Crossref | GoogleScholarGoogle Scholar |

Koot, Y. E., Teklenburg, G., Salker, M. S., Brosens, J. J., and Macklon, N. S. (2012). Molecular aspects of implantation failure. Biochim. Biophys. Acta 1822, 1943–1950.
Molecular aspects of implantation failure.Crossref | GoogleScholarGoogle Scholar |

Lakhani, N. J., Sparreboom, A., Xu, X., Veenstra, T. D., Venitz, J., Dahut, W. L., and Figg, W. D. (2007). Characterization of in vitro and in vivo metabolic pathways of the investigational anticancer agent, 2-methoxyestradiol. J. Pharm. Sci. 96, 1821–1831.
Characterization of in vitro and in vivo metabolic pathways of the investigational anticancer agent, 2-methoxyestradiol.Crossref | GoogleScholarGoogle Scholar |

Lardone, M. C., Castillo, P., Valdevenito, R., Ebensperger, M., Ronco, A. M., Pommer, R., Piottante, A., and Castro, A. (2010). P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. Int. J. Androl. 33, 650–660.

Lee, K. Y., and DeMayo, F. J. (2004). Animal models of implantation. Reproduction 128, 679–695.
Animal models of implantation.Crossref | GoogleScholarGoogle Scholar |

Lee, D. K., Kurihara, I., Jeong, J. W., Lydon, J. P., DeMayo, F. J., Tsai, M. J., and Tsai, S. Y. (2010). Suppression of ERalpha activity by COUP-TFII is essential for successful implantation and decidualization. Mol. Endocrinol. 24, 930–940.
Suppression of ERalpha activity by COUP-TFII is essential for successful implantation and decidualization.Crossref | GoogleScholarGoogle Scholar |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) Method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) Method.Crossref | GoogleScholarGoogle Scholar |

Luu, K. C., Nie, G. Y., and Salamonsen, L. A. (2004). Endometrial calbindins are critical for embryo implantation: evidence from in vivo use of morpholino antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 101, 8028–8033.
Endometrial calbindins are critical for embryo implantation: evidence from in vivo use of morpholino antisense oligonucleotides.Crossref | GoogleScholarGoogle Scholar |

Ma, W., Tan, J., Matsumoto, H., Robert, B., Abrahamson, D. R., Das, S. K., and Dey, S. K. (2001). Adult tissue angiogenesis: evidence for negative regulation by estrogen in the uterus. Mol. Endocrinol. 15, 1983–1992.
Adult tissue angiogenesis: evidence for negative regulation by estrogen in the uterus.Crossref | GoogleScholarGoogle Scholar |

Ma, W. G., Song, H., Das, S. K., Paria, B. C., and Dey, S. K. (2003). Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc. Natl. Acad. Sci. USA 100, 2963–2968.
Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation.Crossref | GoogleScholarGoogle Scholar |

Maran, A., Gorny, G., Oursler, M. J., Zhang, M., Shogren, K. L., Yaszemski, M. J., and Turner, R. T. (2006). 2-Methoxyestradiol inhibits differentiation and is cytotoxic to osteoclasts. J. Cell. Biochem. 99, 425–434.
2-Methoxyestradiol inhibits differentiation and is cytotoxic to osteoclasts.Crossref | GoogleScholarGoogle Scholar |

Miyamoto, K., Morishita, Y., Yamazaki, M., Minamino, N., Kangawa, K., Matsuo, H., Mizutani, T., Yamada, K., and Minegishi, T. (2001). Isolation and characterization of vascular smooth muscle cell growth promoting factor from bovine ovarian follicular fluid and its cDNA cloning from bovine and human ovary. Arch. Biochem. Biophys. 390, 93–100.
Isolation and characterization of vascular smooth muscle cell growth promoting factor from bovine ovarian follicular fluid and its cDNA cloning from bovine and human ovary.Crossref | GoogleScholarGoogle Scholar |

Mygind, T., Birkelund, S., Birkebaek, N. H., Østergaard, L., Jensen, J. S., and Christiansen, G. (2002). Determination of PCR efficiency in chelex-100 purified clinical samples and comparison of real-time quantitative PCR and conventional PCR for detection of Chlamydia pneumoniae. BMC Microbiol. 2, 17.
Determination of PCR efficiency in chelex-100 purified clinical samples and comparison of real-time quantitative PCR and conventional PCR for detection of Chlamydia pneumoniae.Crossref | GoogleScholarGoogle Scholar |

Ng, E. H., Yeung, W. S., Yee Lan Lau, E., So, W. W., and Ho, P. C. (2000). High serum oestradiol concentrations in fresh IVF cycles do not impair implantation and pregnancy rates in subsequent frozen–thawed embryo transfer cycles. Hum. Reprod. 15, 250–255.
High serum oestradiol concentrations in fresh IVF cycles do not impair implantation and pregnancy rates in subsequent frozen–thawed embryo transfer cycles.Crossref | GoogleScholarGoogle Scholar |

Ohnuma, K., Kaneko, H., Noguchi, J., Kikuchi, K., Ozawa, M., and Hasegawa, Y. (2007). Isolation and identification of F-spondin in the boar testis and its production during testis growth. J. Reprod. Dev. 53, 151–158.
Isolation and identification of F-spondin in the boar testis and its production during testis growth.Crossref | GoogleScholarGoogle Scholar |

Orihuela, P. A., and Ishiyama, V. (2006). Postcoital ingestion of the aqueous extract of Erythrina falcata Benth prevents pregnancy in the mouse. Contraception 73, 307–310.
Postcoital ingestion of the aqueous extract of Erythrina falcata Benth prevents pregnancy in the mouse.Crossref | GoogleScholarGoogle Scholar |

Parada-Bustamante, A., Orihuela, P. A., Ríos, M., Navarrete-Gómez, P. A., Cuevas, C. A., Velasquez, L. A., Villalón, M. J., and Croxatto, H. B. (2007). Catechol-o-methyltransferase and methoxyestradiols participate in the intraoviductal nongenomic pathway through which estradiol accelerates egg transport in cycling rats. Biol. Reprod. 77, 934–941.
Catechol-o-methyltransferase and methoxyestradiols participate in the intraoviductal nongenomic pathway through which estradiol accelerates egg transport in cycling rats.Crossref | GoogleScholarGoogle Scholar |

Parada-Bustamante, A., Orihuela, P. A., Ríos, M., Cuevas, C. A., Oróstica, M. L., Velásquez, L. A., Villalón, M. J., and Croxatto, H. B. (2010). A non-genomic signaling pathway shut down by mating changes the estradiol-induced gene expression profile in the rat oviduct. Reproduction 139, 631–644.
A non-genomic signaling pathway shut down by mating changes the estradiol-induced gene expression profile in the rat oviduct.Crossref | GoogleScholarGoogle Scholar |

Parada-Bustamante, A., Orihuela, P. A., Molina, C., Cardenas, H., Reuquen, P., Valencia, C., and Rincón, R. (2013). Hydroxyestradiols and methoxyestradiols as endogenous factors associated to physiological and physiopathological conditions. In ‘Estradiol: synthesis, health effects and drug interaction’. (Eds R. Palmieri and S. Grimaudo.) pp. 121–143. (Nova Science Publishers, Inc: NY.)

Parada-Bustamante, A., Valencia, C., Reuquen, P., Diaz, P., Rincón-Rodriguez, R., and Orihuela, P. A. (2015). Role of 2-methoxyestradiol, an endogenous estrogen metabolite, in health and disease. Mini Rev. Med. Chem. 15, 427–438.
Role of 2-methoxyestradiol, an endogenous estrogen metabolite, in health and disease.Crossref | GoogleScholarGoogle Scholar |

Pellicer, A., Valbuena, D., Cano, F., Remohí, J., and Simón, C. (1996). Lower implantation rates in high responders: evidence for an altered endocrine milieu during the preimplantation period. Fertil. Steril. 65, 1190–1195.
Lower implantation rates in high responders: evidence for an altered endocrine milieu during the preimplantation period.Crossref | GoogleScholarGoogle Scholar |

Rincón-Rodríguez, R. J., Oróstica, M. L., Díaz, P., Reuquén, P., Cárdenas, H., and Orihuela, P. A. (2013). Changes in the gene expression pattern induced by 2-methoxyestradiol in the mouse uterus. Endocrine 44, 773–783.
Changes in the gene expression pattern induced by 2-methoxyestradiol in the mouse uterus.Crossref | GoogleScholarGoogle Scholar |

Rosselli, M., and Dubey, R. K. (2006). Estrogen metabolism and reproduction – is there a relationship? J. Fertil. Reprod. 16, 19–23.

Ruiz-Alonso, M., Blesa, D., and Simón, C. (2012). The genomics of the human endometrium. Biochim. Biophys. Acta 1822, 1931–1942.
The genomics of the human endometrium.Crossref | GoogleScholarGoogle Scholar |

Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.
Analyzing real-time PCR data by the comparative C(T) method.Crossref | GoogleScholarGoogle Scholar |

Sibonga, J. D., Sommer, U., and Turner, R. T. (2002). Evidence that 2-methoxyestradiol suppresses proliferation and accelerates apoptosis in normal rat growth plate chondrocytes. J. Cancer Res. Clin. Oncol. 128, 477–483.
Evidence that 2-methoxyestradiol suppresses proliferation and accelerates apoptosis in normal rat growth plate chondrocytes.Crossref | GoogleScholarGoogle Scholar |

Silberzahn, P., Almahbobi, G., Dehennin, L., and Merouane, A. (1985). Estrogen metabolites in equine ovarian follicles: gas chromatographic-mass spectrometric determinations in relation to follicular ultrastructure and progestin content. J. Steroid Biochem. 22, 501–505.
Estrogen metabolites in equine ovarian follicles: gas chromatographic-mass spectrometric determinations in relation to follicular ultrastructure and progestin content.Crossref | GoogleScholarGoogle Scholar |

Simón, C., Garcia Velasco, J. J., Valbuena, D., Peinado, J. A., Moreno, C., Remohí, J., and Pellicer, A. (1998). Increased uterine receptivity by decreasing estradiol levels during the preimplantation period in high responder patients by using an FSH step-down regimen. Fertil. Steril. 70, 234–239.
Increased uterine receptivity by decreasing estradiol levels during the preimplantation period in high responder patients by using an FSH step-down regimen.Crossref | GoogleScholarGoogle Scholar |

Terai, Y., Abe, M., Miyamoto, K., Koike, M., Yamasaki, M., Ueda, M., Ueki, M., and Sato, Y. (2001). Vascular smooth muscle cell growth-promoting factor/f-spondin inhibits angiogenesis via the blockade of integrin avb3 on vascular endothelial cells. J. Cell. Physiol. 188, 394–402.
Vascular smooth muscle cell growth-promoting factor/f-spondin inhibits angiogenesis via the blockade of integrin avb3 on vascular endothelial cells.Crossref | GoogleScholarGoogle Scholar |

Valbuena, D., Martin, J., de Pablo, J. L., Remohí, J., Pellicer, A., and Simón, C. (2001). Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo. Fertil. Steril. 76, 962–968.
Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo.Crossref | GoogleScholarGoogle Scholar |

Valencia, C., Molina, C., Florez, M., Buñay, J., Moreno, R. D., Orihuela, P. A., Castro, A., and Parada-Bustamante, A. (2016). 2-Hydroxyoestradiol and 2-methoxyoestradiol, two endogenous oestradiol metabolites, induce DNA fragmentation in Sertoli cells. Andrologia 48, 1294–1306.
2-Hydroxyoestradiol and 2-methoxyoestradiol, two endogenous oestradiol metabolites, induce DNA fragmentation in Sertoli cells.Crossref | GoogleScholarGoogle Scholar |

Wang, H., and Dey, S. K. (2006). Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199.
Roadmap to embryo implantation: clues from mouse models.Crossref | GoogleScholarGoogle Scholar |

Yochim, J. M., and DeFeo, V. J. (1962). Control of decidual growth in the rat by steroid hormones of the ovary Endocrinology 71, 134–142.
Control of decidual growth in the rat by steroid hormones of the ovaryCrossref | GoogleScholarGoogle Scholar |

Yochim, J. M., and DeFeo, V. J. (1963). Hormonal control of the onset, magnitude and duration of uterine sensitivity in the rat by steroid hormones of the ovary. Endocrinology 72, 317–326.
Hormonal control of the onset, magnitude and duration of uterine sensitivity in the rat by steroid hormones of the ovary.Crossref | GoogleScholarGoogle Scholar |

Yue, T. L., Wang, X., Louden, C. S., Gupta, S., Pillarisetti, K., Gu, J. L., Hart, T. K., Lysko, P. G., and Feuerstein, G. Z. (1997). 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol. Pharmacol. 51, 951–962.
2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signaling pathway and Fas expression.Crossref | GoogleScholarGoogle Scholar |

Zhu, B. T., and Conney, A. H. (1998). Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19, 1–27.
Functional role of estrogen metabolism in target cells: review and perspectives.Crossref | GoogleScholarGoogle Scholar |