Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Maternal control of early embryogenesis in mammals

Kun Zhang A B D and George W. Smith A B C
+ Author Affiliations
- Author Affiliations

A Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824, USA.

B Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.

C Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.

D Corresponding author. Email: kzhang@msu.edu

Reproduction, Fertility and Development 27(6) 880-896 https://doi.org/10.1071/RD14441
Submitted: 14 November 2014  Accepted: 10 January 2015   Published: 20 February 2015

Abstract

Oocyte quality is a critical factor limiting the efficiency of assisted reproductive technologies (ART) and pregnancy success in farm animals and humans. ART success is diminished with increased maternal age, suggesting a close link between poor oocyte quality and ovarian aging. However, the regulation of oocyte quality remains poorly understood. Oocyte quality is functionally linked to ART success because the maternal-to-embryonic transition (MET) is dependent on stored maternal factors, which are accumulated in oocytes during oocyte development and growth. The MET consists of critical developmental processes, including maternal RNA depletion and embryonic genome activation. In recent years, key maternal proteins encoded by maternal-effect genes have been determined, primarily using genetically modified mouse models. These proteins are implicated in various aspects of early embryonic development, including maternal mRNA degradation, epigenetic reprogramming, signal transduction, protein translation and initiation of embryonic genome activation. Species differences exist in the number of cell divisions encompassing the MET and maternal-effect genes controlling this developmental window. Perturbations of maternal control, some of which are associated with ovarian aging, result in decreased oocyte quality.

Additional keywords: embryo, epigenetics, maternal effect, mitochondria, oocyte quality, reproductive aging.


References

Altermatt, J. L., Suh, T. K., Stokes, J. E., and Carnevale, E. M. (2009). Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI). Reprod. Fertil. Dev. 21, 615–623.
Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksF2rtbc%3D&md5=21ee49d7434170275d715474414153b4CAS | 19383268PubMed |

Altermatt, J. L., Marolf, A. J., Wrigley, R. H., and Carnevale, E. M. (2012). Effects of FSH and LH on ovarian and follicular blood flow, follicular growth and oocyte developmental competence in young and old mares. Anim. Reprod. Sci. 133, 191–197.
Effects of FSH and LH on ovarian and follicular blood flow, follicular growth and oocyte developmental competence in young and old mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2itbrE&md5=a3bc6d8b9ab4b706ad69b4f311e6c41eCAS | 22831776PubMed |

Armstrong, D. G., McEvoy, T. G., Baxter, G., Robinson, J. J., Hogg, C. O., Woad, K. J., Webb, R., and Sinclair, K. D. (2001). Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: associations with the ovarian insulin-like growth factor system. Biol. Reprod. 64, 1624–1632.
Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: associations with the ovarian insulin-like growth factor system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGgsbY%3D&md5=238c39400975bd1260f3b36adad200c6CAS | 11369588PubMed |

Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140.
Multipotent cell lineages in early mouse development depend on SOX2 function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlKqtg%3D%3D&md5=1ac7c2c5ac77e16715571b16a61fe65fCAS | 12514105PubMed |

Bakhtari, A., and Ross, P. J. (2014). DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos. Epigenetics 9, 1271–1279.
DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos.Crossref | GoogleScholarGoogle Scholar | 25147917PubMed |

Bates, G. W. (1985). Body weight control practice as a cause of infertility. Clin. Obstet. Gynecol. 28, 632–644.
Body weight control practice as a cause of infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FivVyisw%3D%3D&md5=dd6c096e9e2dc940ec193abf84aed343CAS | 3931948PubMed |

Beaujean, N. (2014). Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol. Reprod. Dev. 81, 100–112.
Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2lur3K&md5=59b1ea67fefc14dcec02e90211c344f7CAS | 24150914PubMed |

Becker, M., Becker, A., Miyara, F., Han, Z., Kihara, M., Brown, D. T., Hager, G. L., Latham, K., Adashi, E. Y., and Misteli, T. (2005). Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer. Mol. Biol. Cell 16, 3887–3895.
Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosVCnsL8%3D&md5=337b86a43888af5a893a7e5ef3f55061CAS | 15944219PubMed |

Bettegowda, A., Yao, J., Sen, A., Li, Q., Lee, K. B., Kobayashi, Y., Patel, O. V., Coussens, P. M., Ireland, J. J., and Smith, G. W. (2007). JY-1, an oocyte-specific gene, regulates granulosa cell function and early embryonic development in cattle. Proc. Natl Acad. Sci. USA 104, 17 602–17 607.
JY-1, an oocyte-specific gene, regulates granulosa cell function and early embryonic development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12msbjJ&md5=66eab6b063c022e01b085238bf7491e3CAS |

Bettegowda, A., Lee, K. B., and Smith, G. W. (2008). Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod. Fertil. Dev. 20, 45–53.
Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCis7Y%3D&md5=9e2113bf18e1b6c13807ba0197fa3c2bCAS | 18154697PubMed |

Bierkamp, C., Luxey, M., Metchat, A., Audouard, C., Dumollard, R., and Christians, E. (2010). Lack of maternal Heat Shock Factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Dev. Biol. 339, 338–353.
Lack of maternal Heat Shock Factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1ajurY%3D&md5=5674b83ae96d9a1990001ef3ef00e8ecCAS | 20045681PubMed |

Binelli, M., and Murphy, B. D. (2010). Coordinated regulation of follicle development by germ and somatic cells. Reprod. Fertil. Dev. 22, 1–12.
Coordinated regulation of follicle development by germ and somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlagurs%3D&md5=17ae07d1fd3f46b79e67286eafdb198fCAS | 20003840PubMed |

Blij, S., Frum, T., Akyol, A., Fearon, E., and Ralston, A. (2012). Maternal Cdx2 is dispensable for mouse development. Development 139, 3969–3972.
Maternal Cdx2 is dispensable for mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaksbnM&md5=3908d7eb050a57b24aaff78910884e49CAS | 22992952PubMed |

Bultman, S. J., Gebuhr, T. C., Pan, H., Svoboda, P., Schultz, R. M., and Magnuson, T. (2006). Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev. 20, 1744–1754.
Maternal BRG1 regulates zygotic genome activation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvV2ksLg%3D&md5=20231beba0561a819cb9b1965c74269dCAS | 16818606PubMed |

Burns, K. H., Viveiros, M. M., Ren, Y., Wang, P., DeMayo, F. J., Frail, D. E., Eppig, J. J., and Matzuk, M. M. (2003). Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300, 633–636.
Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVymu7w%3D&md5=9b04e3c07b557a75bfcceca2ac5fba1dCAS | 12714744PubMed |

Carnevale, E. M. (2008). The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 69, 23–30.
The mare model for follicular maturation and reproductive aging in the woman.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmu7nN&md5=b1d730b243c0636c9f9498a2aecbc1f0CAS | 17976712PubMed |

Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M., and Lampson, M. A. (2010). Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20, 1522–1528.
Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsL7O&md5=1dae052aacd019cba2493b0628e16814CAS | 20817534PubMed |

Christians, E., Davis, A. A., Thomas, S. D., and Benjamin, I. J. (2000). Maternal effect of Hsf1 on reproductive success. Nature 407, 693–694.
Maternal effect of Hsf1 on reproductive success.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFSitbs%3D&md5=4db2c723537ef5525c78c44cc3fdac64CAS | 11048707PubMed |

Ciccone, D. N., Su, H., Hevi, S., Gay, F., Lei, H., Bajko, J., Xu, G., Li, E., and Chen, T. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461, 415–418.
KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOmu7jK&md5=ed840e33ebe3d99738a3c6ffc1b804c5CAS | 19727073PubMed |

Cockburn, K., Biechele, S., Garner, J., and Rossant, J. (2013). The Hippo pathway member Nf2 is required for inner cell mass specification. Curr. Biol. 23, 1195–1201.
The Hippo pathway member Nf2 is required for inner cell mass specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVGlsL8%3D&md5=cfa8f86c2679878c5609018c58e82865CAS | 23791728PubMed |

Craven, L., Tuppen, H. A., Greggains, G. D., Harbottle, S. J., Murphy, J. L., Cree, L. M., Murdoch, A. P., Chinnery, P. F., Taylor, R. W., Lightowlers, R. N., Herbert, M., and Turnbull, D. M. (2010). Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 465, 82–85.
Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslart7o%3D&md5=8648e9072524701cb155575f7d03f15dCAS | 20393463PubMed |

da Silveira, J. C., Veeramachaneni, D. N., Winger, Q. A., Carnevale, E. M., and Bouma, G. J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 86, 71.
Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 22116803PubMed |

de Vries, W. N., Evsikov, A. V., Haac, B. E., Fancher, K. S., Holbrook, A. E., Kemler, R., Solter, D., and Knowles, B. B. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development 131, 4435–4445.
Maternal beta-catenin and E-cadherin in mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVehtL8%3D&md5=4e95e954b6c876115fcb65dabce74f81CAS | 15306566PubMed |

Di Lisa, F., Kaludercic, N., Carpi, A., Menabo, R., and Giorgio, M. (2009). Mitochondria and vascular pathology. Pharmacol. Rep. 61, 123–130.
Mitochondria and vascular pathology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCku77L&md5=704718b82fb83bcfe2c34c0a9bc9dba6CAS | 19307700PubMed |

Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535.
Growth differentiation factor-9 is required during early ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1GrsL0%3D&md5=5c10c4ac41fd02bc37d86bca11314897CAS | 8849725PubMed |

Dumollard, R., Duchen, M., and Carroll, J. (2007). The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol. 77, 21–49.
The role of mitochondrial function in the oocyte and embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Gltb4%3D&md5=ef902ce04a34ede18ce030f99570900eCAS | 17222699PubMed |

Dunaif, A., and Fauser, B. C. (2013). Renaming PCOS: a two-state solution. J. Clin. Endocrinol. Metab. 98, 4325–4328.
Renaming PCOS: a two-state solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsl2msr%2FE&md5=2230f7a0c805157bc10c51d6dd58607cCAS | 24009134PubMed |

Duncan, F. E., Chiang, T., Schultz, R. M., and Lampson, M. A. (2009). Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol. Reprod. 81, 768–776.
Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLnE&md5=7de5f3bcadcf7c30c83d7a450f3584c8CAS | 19553597PubMed |

Dunning, K. R., Russell, D. L., and Robker, R. L. (2014). Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction 148, R15–R27.
Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyrtrnE&md5=165dea5bbc533770beafa05b87509710CAS | 24760880PubMed |

Edson, M. A., Nagaraja, A. K., and Matzuk, M. M. (2009). The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624–712.
The mammalian ovary from genesis to revelation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyhsrbL&md5=b5626fbfb0dc8c3f452e1ab077959ae7CAS | 19776209PubMed |

Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R. (2004). Spindles, mitochondria and redox potential in ageing oocytes. Reprod. Biomed. Online 8, 45–58.
Spindles, mitochondria and redox potential in ageing oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Ojsb0%3D&md5=f9462779f0def4474ea137805b1c04cdCAS | 14759287PubMed |

el Hajj, N., and Haaf, T. (2013). Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil. Steril. 99, 632–641.
Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWmsbs%3D&md5=88aec9bd33603bb0868533b7d945e386CAS | 23357453PubMed |

Eppig, J. J., Pendola, F. L., Wigglesworth, K., and Pendola, J. K. (2005). Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol. Reprod. 73, 351–357.
Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLk%3D&md5=6e1812bd278e5f7b1c746ee7bdc2e9b2CAS | 15843493PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191.
Errors in development of fetuses and placentas from in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |

Fleming, T. P., Lucas, E. S., Watkins, A. J., and Eckert, J. J. (2012). Adaptive responses of the embryo to maternal diet and consequences for post-implantation development. Reprod. Fertil. Dev. 24, 35–44.
Adaptive responses of the embryo to maternal diet and consequences for post-implantation development.Crossref | GoogleScholarGoogle Scholar |

Frum, T., Halbisen, M. A., Wang, C., Amiri, H., Robson, P., and Ralston, A. (2013). Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev. Cell 25, 610–622.
Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFKltLw%3D&md5=e46d8ba530b927d92d81764d5144de98CAS | 23747191PubMed |

Ginther, O. J., Bergfelt, D. R., Leith, G. S., and Scraba, S. T. (1985). Embryonic loss in mares: incidence and ultrasonic morphology. Theriogenology 24, 73–86.
Embryonic loss in mares: incidence and ultrasonic morphology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyhtQ%3D%3D&md5=47371edffb435126ac861bb0bfcc9e0eCAS | 16726060PubMed |

Golding, M. C., Williamson, G. L., Stroud, T. K., Westhusin, M. E., and Long, C. R. (2011). Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Mol. Reprod. Dev. 78, 306–317.
Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVGht7w%3D&md5=3da78423d93c23adbc3efea112b3492cCAS | 21480430PubMed |

Grace, K. S., and Sinclair, K. D. (2009). Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin. Reprod. Med. 27, 409–416.
Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOis7zK&md5=62bcfc5c539599040216f480687b35d4CAS | 19711251PubMed |

Gu, T. P., Guo, F., Yang, H., Wu, H. P., Xu, G. F., Liu, W., Xie, Z. G., Shi, L., He, X., Jin, S. G., Iqbal, K., Shi, Y. G., Deng, Z., Szabo, P. E., Pfeifer, G. P., Li, J., and Xu, G. L. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFersL7M&md5=700c4d2113e0c792f7ca54cf4944535bCAS | 21892189PubMed |

Guglielmino, M. R., Santonocito, M., Vento, M., Ragusa, M., Barbagallo, D., Borzi, P., Casciano, I., Banelli, B., Barbieri, O., Astigiano, S., Scollo, P., Romani, M., Purrello, M., and Di Pietro, C. (2011). TAp73 is downregulated in oocytes from women of advanced reproductive age. Cell Cycle 10, 3253–3256.
TAp73 is downregulated in oocytes from women of advanced reproductive age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFWrtg%3D%3D&md5=84639932abb101aef9dcbd14dcb8fef8CAS | 21946516PubMed |

Gurtu, V. E., Verma, S., Grossmann, A. H., Liskay, R. M., Skarnes, W. C., and Baker, S. M. (2002). Maternal effect for DNA mismatch repair in the mouse. Genetics 160, 271–277.
| 1:CAS:528:DC%2BD38XhsFKqsbk%3D&md5=8ad1c931b7fb104e1c9b96a58a86a2ddCAS | 11805062PubMed |

Hamatani, T., Falco, G., Carter, M. G., Akutsu, H., Stagg, C. A., Sharov, A. A., Dudekula, D. B., VanBuren, V., and Ko, M. S. (2004). Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13, 2263–2278.
Age-associated alteration of gene expression patterns in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Onu7k%3D&md5=7b188ed580c78f36aa6e957827fae7eaCAS | 15317747PubMed |

Hansen, P. J., Block, J., Loureiro, B., Bonilla, L., and Hendricks, K. E. (2010). Effects of gamete source and culture conditions on the competence of in vitro-produced embryos for post-transfer survival in cattle. Reprod. Fertil. Dev. 22, 59–66.
Effects of gamete source and culture conditions on the competence of in vitro-produced embryos for post-transfer survival in cattle.Crossref | GoogleScholarGoogle Scholar | 20003846PubMed |

Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993.
| 1:CAS:528:DC%2BD38XjslSls70%3D&md5=82d4ce903946c5206068d16f26f0555aCAS | 11934864PubMed |

Hemberger, M., Dean, W., and Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat. Rev. Mol. Cell Biol. 10, 526–537.
Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFWhtrY%3D&md5=7bfcf8e7106e6443222982f4e06a95a3CAS | 19603040PubMed |

Hinrichs, K. (2010). The equine oocyte: factors affecting meiotic and developmental competence. Mol. Reprod. Dev. 77, 651–661.
The equine oocyte: factors affecting meiotic and developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGnsb8%3D&md5=f7a82ee6d88c6f9bd10e5eb4dbe53dafCAS | 20652997PubMed |

Hirasawa, R., Chiba, H., Kaneda, M., Tajima, S., Li, E., Jaenisch, R., and Sasaki, H. (2008). Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22, 1607–1616.
Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVWmsb0%3D&md5=477f7b03c8cc7b4e3e8966e0bbb4356aCAS | 18559477PubMed |

Howe, K., and FitzHarris, G. (2013). Recent insights into spindle function in mammalian oocytes and early embryos. Biol. Reprod. 89, 71.
Recent insights into spindle function in mammalian oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 23966320PubMed |

Hsueh, A. J., Kawamura, K., Cheng, Y., and Fauser, B. C. (2014). Intraovarian control of early folliculogenesis. Endocr. Rev , .
Intraovarian control of early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 25202833PubMed |

Hunt, P. A., Lawson, C., Gieske, M., Murdoch, B., Smith, H., Marre, A., Hassold, T., and VandeVoort, C. A. (2012). Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc. Natl Acad. Sci. USA 109, 17 525–17 530.
Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSltLjM&md5=8d8e793785f99fa54455fb59de18e6c1CAS |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=00c769153fa81c05146e56febba70e9dCAS | 16854407PubMed |

Inoue, A., and Zhang, Y. (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194.
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yksbbN&md5=764ac31646cbccf6467b7612b1d7e74aCAS | 21940858PubMed |

Inoue, A., and Zhang, Y. (2014). Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat. Struct. Mol. Biol. 21, 609–616.
Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVamsbw%3D&md5=aa872bf602c43af32332577cbade90afCAS | 24908396PubMed |

Inoue, A., Ogushi, S., Saitou, M., Suzuki, M. G., and Aoki, F. (2011). Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization. Biol. Reprod. 85, 70–77.
Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOls78%3D&md5=5407dad756c90bfa7e1a856e0a3ade13CAS | 21415138PubMed |

Iqbal, K., Jin, S. G., Pfeifer, G. P., and Szabo, P. E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647.
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKqs7Y%3D&md5=ce4a13e5f1603d78078dac2a0b36fc4fCAS | 21321204PubMed |

Iyengar, S., and Farnham, P. J. (2011). KAP1 protein: an enigmatic master regulator of the genome. J. Biol. Chem. 286, 26 267–26 276.
KAP1 protein: an enigmatic master regulator of the genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Kkt7w%3D&md5=810f21fc7139a8467d335d1e71f7a67fCAS |

Jeong, W. J., Cho, S. J., Lee, H. S., Deb, G. K., Lee, Y. S., Kwon, T. H., and Kong, I. K. (2009). Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 72, 584–589.
Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2ns7s%3D&md5=1502066154333e88f31dac13f631880dCAS | 19501898PubMed |

Jones, K. T., and Lane, S. I. (2013). Molecular causes of aneuploidy in mammalian eggs. Development 140, 3719–3730.
Molecular causes of aneuploidy in mammalian eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CktL7K&md5=45a269b027800d700f39dffb679a338eCAS | 23981655PubMed |

Kaneda, M., Hirasawa, R., Chiba, H., Okano, M., Li, E., and Sasaki, H. (2010). Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation. Genes Cells 15, 169–179.
Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFKqsLo%3D&md5=c6d46760996334a065bdfd835bf2cc7cCAS | 20132320PubMed |

Kim, J. Y., Kinoshita, M., Ohnishi, M., and Fukui, Y. (2001). Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction 122, 131–138.
Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis70%3D&md5=2b5049110598d7946e58d5859cdefa02CAS | 11425337PubMed |

Kim, K. H., Kim, E. Y., and Lee, K. A. (2008). SEBOX is essential for early embryogenesis at the two-cell stage in the mouse. Biol. Reprod. 79, 1192–1201.
SEBOX is essential for early embryogenesis at the two-cell stage in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCltLzL&md5=523760cf52e05702ae8d105d87972af1CAS | 18753614PubMed |

Kohli, R. M., and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479.
TET enzymes, TDG and the dynamics of DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KrurzF&md5=44b39ee626db7246d17afae5d8f1d4baCAS | 24153300PubMed |

Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930.
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurk%3D&md5=493b98b5cd0f639106b654340eacac36CAS | 19372393PubMed |

Kuliev, A., Zlatopolsky, Z., Kirillova, I., Spivakova, J., and Cieslak Janzen, J. (2011). Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod. Biomed. Online 22, 2–8.
Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing.Crossref | GoogleScholarGoogle Scholar | 21115270PubMed |

Lane, M., Robker, R. L., and Robertson, S. A. (2014). Parenting from before conception. Science 345, 756–760.
Parenting from before conception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlejtL%2FN&md5=575b28af63c68cc69352b3f861dd4e66CAS | 25124428PubMed |

Lapa, M., Marques, C. C., Alves, S. P., Vasques, M. I., Baptista, M. C., Carvalhais, I., Silva Pereira, M., Horta, A. E., Bessa, R. J., and Pereira, R. M. (2011). Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod. Domest. Anim. 46, 904–910.
Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtrvM&md5=9295b3ccf475eda0f8d5ef16f1426279CAS | 21366717PubMed |

Larue, L., Ohsugi, M., Hirchenhain, J., and Kemler, R. (1994). E-Cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA 91, 8263–8267.
E-Cadherin null mutant embryos fail to form a trophectoderm epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFCjur8%3D&md5=bc615dc846c4ead576f74f0add802037CAS | 8058792PubMed |

Leader, B., Lim, H., Carabatsos, M. J., Harrington, A., Ecsedy, J., Pellman, D., Maas, R., and Leder, P. (2002). Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes. Nat. Cell Biol. 4, 921–928.
Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFKmt70%3D&md5=a024d866ec001335ca5f9e1c71db80eeCAS | 12447394PubMed |

Lee, J. T., and Bartolomei, M. S. (2013). X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323.
X-inactivation, imprinting, and long noncoding RNAs in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFakt70%3D&md5=51f37ea14c9b6a3ca12ad5edc171f9eeCAS | 23498939PubMed |

Lee, K. B., Bettegowda, A., Wee, G., Ireland, J. J., and Smith, G. W. (2009). Molecular determinants of oocyte competence: potential functional role for maternal (oocyte-derived) follistatin in promoting bovine early embryogenesis. Endocrinology 150, 2463–2471.
Molecular determinants of oocyte competence: potential functional role for maternal (oocyte-derived) follistatin in promoting bovine early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCisrg%3D&md5=413e2d6e5f36cd9629c76b2167ad1466CAS | 19179440PubMed |

Lee, K. B., Wee, G., Zhang, K., Folger, J. K., Knott, J. G., and Smith, G. W. (2014a). Functional role of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and subsequent embryonic development. Biol. Reprod. 90, 69.
Functional role of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and subsequent embryonic development.Crossref | GoogleScholarGoogle Scholar | 24501174PubMed |

Lee, K. B., Zhang, K., Folger, J. K., Knott, J. G., and Smith, G. W. (2014b). Evidence supporting a functional requirement of SMAD4 for bovine preimplantation embryonic development: a potential link to embryotrophic actions of follistatin. Biol. Reprod. 91, 62.
Evidence supporting a functional requirement of SMAD4 for bovine preimplantation embryonic development: a potential link to embryotrophic actions of follistatin.Crossref | GoogleScholarGoogle Scholar | 25031360PubMed |

Lee, M. T., Bonneau, A. R., and Giraldez, A. J. (2014c). Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30, 581–613.
Zygotic genome activation during the maternal-to-zygotic transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVeit7nL&md5=b30429ff083f8be98f7332cdc9f51005CAS | 25150012PubMed |

Leroy, J. L., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G., and Van Soom, A. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495.
Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFent7rJ&md5=16ddfb8af1de3a55f051d7e88b361557CAS | 16183866PubMed |

Li, R., and Albertini, D. F. (2013). The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat. Rev. Mol. Cell Biol. 14, 141–152.
The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVKmsrY%3D&md5=4f840e0e9290512695570654e6e79300CAS | 23429793PubMed |

Li, L., Baibakov, B., and Dean, J. (2008a). A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425.
A subcortical maternal complex essential for preimplantation mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOit7vL&md5=87994387cce2a383b8b259408e0fb0b2CAS | 18804437PubMed |

Li, X., Ito, M., Zhou, F., Youngson, N., Zuo, X., Leder, P., and Ferguson-Smith, A. C. (2008b). A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557.
A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ymu7rL&md5=ad6939c5bdb42f2d24e7cc33884ab92fCAS | 18854139PubMed |

Lin, M. T., and Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795.
Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyktbbO&md5=5ff1931caf32d279a6c1164dc77378deCAS | 17051205PubMed |

Lin, C. J., Conti, M., and Ramalho-Santos, M. (2013). Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development 140, 3624–3634.
Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOktL%2FL&md5=05f684855eba7bd9bb9c9eb6b0a8fbecCAS | 23903189PubMed |

Lin, C. J., Koh, F. M., Wong, P., Conti, M., and Ramalho-Santos, M. (2014). Hira-mediated h3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev. Cell 30, 268–279.
Hira-mediated h3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Oqs7fO&md5=c5267a51f2100db776624f8be2873408CAS | 25087892PubMed |

Lindbloom, S. M., Farmerie, T. A., Clay, C. M., Seidel, G. E., and Carnevale, E. M. (2008). Potential involvement of EGF-like growth factors and phosphodiesterases in initiation of equine oocyte maturation. Anim. Reprod. Sci. 103, 187–192.
Potential involvement of EGF-like growth factors and phosphodiesterases in initiation of equine oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWktb3L&md5=2a3e7d44535d42c669984780373c5e80CAS | 17507186PubMed |

Lister, L. M., Kouznetsova, A., Hyslop, L. A., Kalleas, D., Pace, S. L., Barel, J. C., Nathan, A., Floros, V., Adelfalk, C., Watanabe, Y., Jessberger, R., Kirkwood, T. B., Hoog, C., and Herbert, M. (2010). Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521.
Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsL7N&md5=3fe0a940ba0ca643779106e53f3c875aCAS | 20817533PubMed |

Lonergan, P., Rizos, D., Gutierrez-Adan, A., Fair, T., and Boland, M. P. (2003). Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod. Domest. Anim. 38, 259–267.
Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svis1SrsA%3D%3D&md5=f661b37f7301bbd182ee7b406dd9346aCAS | 12887565PubMed |

Lopes, F. L., Fortier, A. L., Darricarrere, N., Chan, D., Arnold, D. R., and Trasler, J. M. (2009). Reproductive and epigenetic outcomes associated with aging mouse oocytes. Hum. Mol. Genet. 18, 2032–2044.
Reproductive and epigenetic outcomes associated with aging mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWqsbs%3D&md5=96d8cfbcd96f2f846a76f134b725cd8dCAS | 19293340PubMed |

Luzzo, K. M., Wang, Q., Purcell, S. H., Chi, M., Jimenez, P. T., Grindler, N., Schedl, T., and Moley, K. H. (2012). High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS ONE 7, e49217.
High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKjtrvN&md5=9bc77d7bb0f30a2e41cdb8f2da55d9a2CAS | 23152876PubMed |

Lykke-Andersen, K., Gilchrist, M. J., Grabarek, J. B., Das, P., Miska, E., and Zernicka-Goetz, M. (2008). Maternal Argonaute 2 is essential for early mouse development at the maternal–zygotic transition. Mol. Biol. Cell 19, 4383–4392.
Maternal Argonaute 2 is essential for early mouse development at the maternal–zygotic transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ygsb7E&md5=80406d30f629b402b525eb81a7fbec35CAS | 18701707PubMed |

Ma, J., Zeng, F., Schultz, R. M., and Tseng, H. (2006). Basonuclin: a novel mammalian maternal-effect gene. Development 133, 2053–2062.
Basonuclin: a novel mammalian maternal-effect gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2itbo%3D&md5=c86b80b38401306d660b92aeea2b7f97CAS | 16624857PubMed |

Mackay, D. J., Callaway, J. L., Marks, S. M., White, H. E., Acerini, C. L., Boonen, S. E., Dayanikli, P., Firth, H. V., Goodship, J. A., Haemers, A. P., Hahnemann, J. M., Kordonouri, O., Masoud, A. F., Oestergaard, E., Storr, J., Ellard, S., Hattersley, A. T., Robinson, D. O., and Temple, I. K. (2008). Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951.
Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVKrsrk%3D&md5=50cf988bef731a337b24c7e840a12a2aCAS | 18622393PubMed |

Macklon, N. S., Stouffer, R. L., Giudice, L. C., and Fauser, B. C. (2006). The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr. Rev. 27, 170–207.
The science behind 25 years of ovarian stimulation for in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 16434510PubMed |

Malhi, P. S., Adams, G. P., Mapletoft, R. J., and Singh, J. (2007). Oocyte developmental competence in a bovine model of reproductive aging. Reproduction 134, 233–239.
Oocyte developmental competence in a bovine model of reproductive aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrfI&md5=306c71e6c45b31a14a570776ffded146CAS | 17660233PubMed |

Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2009). The effect of linolenic acid on bovine oocyte maturation and development. Biol. Reprod. 81, 1064–1072.
The effect of linolenic acid on bovine oocyte maturation and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7vL&md5=1d34e5b39c92069c5663db33aba34e9cCAS | 19587335PubMed |

Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2010). Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 139, 979–988.
Impact of linoleic acid on bovine oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsLY%3D&md5=f1453b3876f400dafb2548712582ab31CAS | 20215338PubMed |

Market-Velker, B. A., Zhang, L., Magri, L. S., Bonvissuto, A. C., and Mann, M. R. (2010). Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 19, 36–51.
Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhu7jL&md5=a1558388e68bec85fe9f0cd8ed890c6aCAS | 19805400PubMed |

Matzuk, M. M., and Burns, K. H. (2012). Genetics of mammalian reproduction: modeling the end of the germline. Annu. Rev. Physiol. 74, 503–528.
Genetics of mammalian reproduction: modeling the end of the germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFynt7w%3D&md5=3c7780501f6069d7fc264d37337f9cbcCAS | 22335799PubMed |

McGrath, J., and Solter, D. (1983). Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220, 1300–1302.
Nuclear transplantation in the mouse embryo by microsurgery and cell fusion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s3itlGksQ%3D%3D&md5=2bed522c609f923942e94bcaf70d27cdCAS | 6857250PubMed |

Merriman, J. A., Jennings, P. C., McLaughlin, E. A., and Jones, K. T. (2012). Effect of aging on superovulation efficiency, aneuploidy rates, and sister chromatid cohesion in mice aged up to 15 months. Biol. Reprod. 86, 49.
Effect of aging on superovulation efficiency, aneuploidy rates, and sister chromatid cohesion in mice aged up to 15 months.Crossref | GoogleScholarGoogle Scholar | 22053097PubMed |

Messerschmidt, D. M., de Vries, W., Ito, M., Solter, D., Ferguson-Smith, A., and Knowles, B. B. (2012). Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499–1502.
Trim28 is required for epigenetic stability during mouse oocyte to embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWksbk%3D&md5=bcef671bb37fcb3e7300d60f42b5e3b9CAS | 22442485PubMed |

Mitalipov, S., and Wolf, D. P. (2014). Clinical and ethical implications of mitochondrial gene transfer. Trends Endocrinol. Metab. 25, 5–7.
Clinical and ethical implications of mitochondrial gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWnur%2FJ&md5=376b39db1f3acbc4bedf84cdec5a96bcCAS | 24373414PubMed |

Morgan, H. D., Santos, F., Green, K., Dean, W., and Reik, W. (2005). Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58.
Epigenetic reprogramming in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFeksb4%3D&md5=587478154ddc965309382e525bee62d9CAS | 15809273PubMed |

Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M. Q., Schultz, R. M., and Hannon, G. J. (2007). Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693.
Critical roles for Dicer in the female germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1WqsbY%3D&md5=562a1b74a52ef626f4ea492f33cb43b3CAS | 17369401PubMed |

Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., Sekimoto, T., Ikawa, M., Yoneda, Y., Okabe, M., Tanaka, S., Shiota, K., and Nakano, T. (2007). PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 64–71.
PGC7/Stella protects against DNA demethylation in early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltV2l&md5=8e9e3e07be9b304404a5c840d1c80daeCAS | 17143267PubMed |

Nakamura, T., Liu, Y. J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., and Nakano, T. (2012). PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419.
| 1:CAS:528:DC%2BC38XovFyrtro%3D&md5=0f82bff88005aa5c56ef71878f2e0c61CAS | 22722204PubMed |

Narducci, M. G., Fiorenza, M. T., Kang, S. M., Bevilacqua, A., Di Giacomo, M., Remotti, D., Picchio, M. C., Fidanza, V., Cooper, M. D., Croce, C. M., Mangia, F., and Russo, G. (2002). TCL1 participates in early embryonic development and is overexpressed in human seminomas. Proc. Natl Acad. Sci. USA 99, 11 712–11 717.
TCL1 participates in early embryonic development and is overexpressed in human seminomas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFWqtr4%3D&md5=524159f64a2c2282e76969eb475b3cc6CAS |

Navot, D., Bergh, P. A., Williams, M. A., Garrisi, G. J., Guzman, I., Sandler, B., and Grunfeld, L. (1991). Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet 337, 1375–1377.
Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3ksFyltg%3D%3D&md5=983346fe83f85664fed007ae1402814cCAS | 1674764PubMed |

Nusslein-Volhard, C., Lohs-Schardin, M., Sander, K., and Cremer, C. (1980). A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283, 474–476.
A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c%2FpvFKmsg%3D%3D&md5=6c9c8d5491c7c9f8a97daac78ac2189aCAS | 6766208PubMed |

Pan, H., and Schultz, R. M. (2011). Sox2 modulates reprogramming of gene expression in two-cell mouse embryos. Biol. Reprod. 85, 409–416.
Sox2 modulates reprogramming of gene expression in two-cell mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOms7Y%3D&md5=932731a527b4c6f238b40ab46ad9221aCAS | 21543769PubMed |

Pan, H., Ma, P., Zhu, W., and Schultz, R. M. (2008). Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev. Biol. 316, 397–407.
Age-associated increase in aneuploidy and changes in gene expression in mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVKrtLw%3D&md5=a112cc0d42e5e681bde336e2c404177aCAS | 18342300PubMed |

Park, J. Y., Su, Y. Q., Ariga, M., Law, E., Jin, S. L., and Conti, M. (2004). EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684.
EGF-like growth factors as mediators of LH action in the ovulatory follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKlsg%3D%3D&md5=5d954a7ad7a1fe0e2878c16ac4ee2563CAS | 14726596PubMed |

Patel, O. V., Bettegowda, A., Ireland, J. J., Coussens, P. M., Lonergan, P., and Smith, G. W. (2007). Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes. Reproduction 133, 95–106.
Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1aju7w%3D&md5=0243c15a3a14038d818ff3bd58382069CAS | 17244736PubMed |

Paull, D., Emmanuele, V., Weiss, K. A., Treff, N., Stewart, L., Hua, H., Zimmer, M., Kahler, D. J., Goland, R. S., Noggle, S. A., Prosser, R., Hirano, M., Sauer, M. V., and Egli, D. (2013). Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493, 632–637.
Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ntLfN&md5=ab792619cb9e53370b1d5180cf067266CAS | 23254936PubMed |

Pennetier, S., Perreau, C., Uzbekova, S., Thelie, A., Delaleu, B., Mermillod, P., and Dalbies-Tran, R. (2006). MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine. BMC Dev. Biol. 6, 26.
MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine.Crossref | GoogleScholarGoogle Scholar | 16753072PubMed |

Perez, G. I., Trbovich, A. M., Gosden, R. G., and Tilly, J. L. (2000). Mitochondria and the death of oocytes. Nature 403, 500–501.
Mitochondria and the death of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1Shsbg%3D&md5=229bc2afa3ee948191e582ca82ee3d69CAS | 10676949PubMed |

Philipps, D. L., Wigglesworth, K., Hartford, S. A., Sun, F., Pattabiraman, S., Schimenti, K., Handel, M., Eppig, J. J., and Schimenti, J. C. (2008). The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev. Biol. 317, 72–82.
The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Sisr0%3D&md5=2d27548d63e37019d6b4fe222b5f89f4CAS | 18353305PubMed |

Plasschaert, R. N., and Bartolomei, M. S. (2014). Genomic imprinting in development, growth, behavior and stem cells. Development 141, 1805–1813.
Genomic imprinting in development, growth, behavior and stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVSnsr%2FO&md5=773d4a52a1ec0e8669b1e3cba7c12984CAS | 24757003PubMed |

Posfai, E., Kunzmann, R., Brochard, V., Salvaing, J., Cabuy, E., Roloff, T. C., Liu, Z., Tardat, M., van Lohuizen, M., Vidal, M., Beaujean, N., and Peters, A. H. (2012). Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920–932.
Polycomb function during oogenesis is required for mouse embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslOgt78%3D&md5=c277cc44570f21cd243443cbcb9d9d3dCAS | 22499591PubMed |

Qiao, J., Wang, Z. B., Feng, H. L., Miao, Y. L., Wang, Q., Yu, Y., Wei, Y. C., Yan, J., Wang, W. H., Shen, W., Sun, S. C., Schatten, H., and Sun, Q. Y. (2014). The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Mol. Aspects Med. 38, 54–85.
The root of reduced fertility in aged women and possible therapentic options: current status and future perspects.Crossref | GoogleScholarGoogle Scholar | 23796757PubMed |

Rajkovic, A., Pangas, S. A., Ballow, D., Suzumori, N., and Matzuk, M. M. (2004). NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305, 1157–1159.
NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslCmtbc%3D&md5=e5fc82995e5847facd8dec8be1cfd0d5CAS | 15326356PubMed |

Rambags, B. P., van Boxtel, D. C., Tharasanit, T., Lenstra, J. A., Colenbrander, B., and Stout, T. A. (2014). Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro. Theriogenology 81, 959–965.
Advancing maternal age predisposes to mitochondrial damage and loss during maturation of equine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsF2gurc%3D&md5=ad6e368a68b30907f0750967a230eb4dCAS | 24576711PubMed |

Ramos, S. B., Stumpo, D. J., Kennington, E. A., Phillips, R. S., Bock, C. B., Ribeiro-Neto, F., and Blackshear, P. J. (2004). The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131, 4883–4893.
The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVOksrs%3D&md5=1c83217ca19e281cc0f31d2c28c32889CAS | 15342461PubMed |

Riethmacher, D., Brinkmann, V., and Birchmeier, C. (1995). A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc. Natl Acad. Sci. USA 92, 855–859.
A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVKiu70%3D&md5=b9380bc3d34553b769ef1edcd53c7510CAS | 7846066PubMed |

Roest, H. P., Baarends, W. M., de Wit, J., van Klaveren, J. W., Wassenaar, E., Hoogerbrugge, J. W., van Cappellen, W. A., Hoeijmakers, J. H., and Grootegoed, J. A. (2004). The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol. Cell. Biol. 24, 5485–5495.
The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOqtb4%3D&md5=cec71fb6a63ceb324cac42462803ae5dCAS | 15169909PubMed |

Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocyte variability and fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=44608f7ae2e3ffae80f03b8cd2a33e56CAS | 16500323PubMed |

Santos, J. E., Bilby, T. R., Thatcher, W. W., Staples, C. R., and Silvestre, F. T. (2008). Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod. Domest. Anim. 43, 23–30.
Long chain fatty acids of diet as factors influencing reproduction in cattle.Crossref | GoogleScholarGoogle Scholar | 18638102PubMed |

Sarmento, O. F., Digilio, L. C., Wang, Y. M., Perlin, J., Herr, J. C., Allis, C. D., and Coonrod, S. A. (2004). Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci. 117, 4449–4459.
Dynamic alterations of specific histone modifications during early murine development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVehtr0%3D&md5=cafcb079a34844fb805cee35af15ab72CAS | 15316069PubMed |

Sartori, R., Bastos, M. R., and Wiltbank, M. C. (2010). Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reprod. Fertil. Dev. 22, 151–158.
Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle.Crossref | GoogleScholarGoogle Scholar | 20003858PubMed |

Savva, G. M., Walker, K., and Morris, J. K. (2010). The maternal age-specific live birth prevalence of trisomies 13 and 18 compared to trisomy 21 (Down syndrome). Prenat. Diagn. 30, 57–64.
| 19911411PubMed |

Schaefer, A. M., Taylor, R. W., Turnbull, D. M., and Chinnery, P. F. (2004). The epidemiology of mitochondrial disorders: past, present and future. Biochim. Biophys. Acta 1659, 115–120.
The epidemiology of mitochondrial disorders: past, present and future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCktb7J&md5=1a21ccce8b4c85302c1b05a96ed774aeCAS | 15576042PubMed |

Schon, E. A., Kim, S. H., Ferreira, J. C., Magalhaes, P., Grace, M., Warburton, D., and Gross, S. J. (2000). Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection? Hum. Reprod. 15, 160–172.
Chromosomal non-disjunction in human oocytes: is there a mitochondrial connection?Crossref | GoogleScholarGoogle Scholar | 11041522PubMed |

Sekiguchi, S., Kwon, J., Yoshida, E., Hamasaki, H., Ichinose, S., Hideshima, M., Kuraoka, M., Takahashi, A., Ishii, Y., Kyuwa, S., Wada, K., and Yoshikawa, Y. (2006). Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am. J. Pathol. 169, 1722–1729.
Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12isrzK&md5=48710061d7a5eb57aea5c950f49e98fbCAS | 17071595PubMed |

Selesniemi, K., Lee, H. J., and Tilly, J. L. (2008). Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell 7, 622–629.
Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ClsLfO&md5=0ca5dae772310abe7b651ee4d5da7d3aCAS | 18549458PubMed |

Selesniemi, K., Lee, H. J., Muhlhauser, A., and Tilly, J. L. (2011). Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc. Natl Acad. Sci. USA 108, 12 319–12 324.
Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFagtbc%3D&md5=562cdea84f59439ed96057f21a89ace2CAS |

Sessions-Bresnahan, D. R., and Carnevale, E. M. (2014). The effect of equine metabolic syndrome on the ovarian follicular environment. J. Anim. Sci. 92, 1485–1494.
The effect of equine metabolic syndrome on the ovarian follicular environment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2crmvVGgsQ%3D%3D&md5=ec46a9d7ae1b3a30ff056f3f4055456dCAS | 24663160PubMed |

Simsek-Duran, F., Li, F., Ford, W., Swanson, R. J., Jones, H. W., and Castora, F. J. (2013). Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes. PLoS ONE 8, e64955.
Age-associated metabolic and morphologic changes in mitochondria of individual mouse and hamster oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslOnsb8%3D&md5=0ad8e9aaf4e4b3f7ef9c14997d5b709fCAS | 23741435PubMed |

Sirard, M. A., Richard, F., Blondin, P., and Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology 65, 126–136.
Contribution of the oocyte to embryo quality.Crossref | GoogleScholarGoogle Scholar | 16256189PubMed |

Spencer, T. E. (2013). Early pregnancy: concepts, challenges, and potential solutions. Anim. Front. 3, 48–55.
Early pregnancy: concepts, challenges, and potential solutions.Crossref | GoogleScholarGoogle Scholar |

Spikings, E. C., Alderson, J., and St John, J. C. (2006). Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer. Hum. Reprod. Update 12, 401–415.
Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Wkur8%3D&md5=9d21edd83de11e7f080a7637e8f8a553CAS | 16581809PubMed |

Spikings, E. C., Alderson, J., and St John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76, 327–335.
Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqtLs%3D&md5=30018c227a337aca5c711740f1c2372bCAS | 17035641PubMed |

Su, Y. Q., Sugiura, K., Wigglesworth, K., O’Brien, M. J., Affourtit, J. P., Pangas, S. A., Matzuk, M. M., and Eppig, J. J. (2008). Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135, 111–121.
Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslGmtLw%3D&md5=65193b8da0288818ca87dc566ac4a04bCAS | 18045843PubMed |

Su, Y. Q., Sugiura, K., and Eppig, J. J. (2009). Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 27, 32–42.
Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntr0%3D&md5=40ce46476fb0069c2f28e3aa5665e469CAS | 19197803PubMed |

Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFeju7k%3D&md5=df54766b689a7f23fed934c7886c6656CAS | 17553902PubMed |

Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., and Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372.
Mitochondrial gene replacement in primate offspring and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGitbfP&md5=d571695b0eebd08103ae52df603954aaCAS | 19710649PubMed |

Tachibana, M., Amato, P., Sparman, M., Woodward, J., Sanchis, D. M., Ma, H., Gutierrez, N. M., Tippner-Hedges, R., Kang, E., Lee, H. S., Ramsey, C., Masterson, K., Battaglia, D., Lee, D., Wu, D., Jensen, J., Patton, P., Gokhale, S., Stouffer, R., and Mitalipov, S. (2013). Towards germline gene therapy of inherited mitochondrial diseases. Nature 493, 627–631.
Towards germline gene therapy of inherited mitochondrial diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOmtL3P&md5=28c8ae881caf68615678d60b4732ab94CAS | 23103867PubMed |

Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurY%3D&md5=e48f725e7b80ecb92b86c3da98231e5aCAS | 19372391PubMed |

Tejomurtula, J., Lee, K. B., Tripurani, S. K., Smith, G. W., and Yao, J. (2009). Role of importin alpha8, a new member of the importin alpha family of nuclear transport proteins, in early embryonic development in cattle. Biol. Reprod. 81, 333–342.
Role of importin alpha8, a new member of the importin alpha family of nuclear transport proteins, in early embryonic development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVaitbk%3D&md5=2c58593a5784a6aeb4cb8a37032a2850CAS | 19420384PubMed |

Thatcher, W. W., Bilby, T. R., Bartolome, J. A., Silvestre, F., Staples, C. R., and Santos, J. E. (2006). Strategies for improving fertility in the modern dairy cow. Theriogenology 65, 30–44.
Strategies for improving fertility in the modern dairy cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gitr3L&md5=d928c47b2e2bc3ac560a0606fd6ffc2cCAS | 16280156PubMed |

Thatcher, W., Santos, J. E., and Staples, C. R. (2011). Dietary manipulations to improve embryonic survival in cattle. Theriogenology 76, 1619–1631.
Dietary manipulations to improve embryonic survival in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVanur3N&md5=d7c6344c989c76ab051d9b421cedbfb9CAS | 21924473PubMed |

Tian, X., and Diaz, F. J. (2013). Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev. Biol. 376, 51–61.
Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOhsbs%3D&md5=ed0ef8af03baa2564656f318aa425b76CAS | 23348678PubMed |

Tian, X., Anthony, K., Neuberger, T., and Diaz, F. J. (2014). Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice. Biol. Reprod. 90, 83.
Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice.Crossref | GoogleScholarGoogle Scholar | 24599289PubMed |

Tilly, J. L., and Sinclair, D. A. (2013). Germline energetics, aging, and female infertility. Cell Metab. 17, 838–850.
Germline energetics, aging, and female infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptV2msLw%3D&md5=809d9dca3043a4281ff7e4d1fb87b70dCAS | 23747243PubMed |

Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., Khan, F., Itie-Youten, A., Wakeham, A., Tsao, M. S., Iovanna, J. L., Squire, J., Jurisica, I., Kaplan, D., Melino, G., Jurisicova, A., and Mak, T. W. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22, 2677–2691.
TAp73 knockout shows genomic instability with infertility and tumor suppressor functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ClsbvK&md5=469f2a7fc3d48a77444eaff36930e616CAS | 18805989PubMed |

Tong, Z. B., Gold, L., Pfeifer, K. E., Dorward, H., Lee, E., Bondy, C. A., Dean, J., and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268.
Mater, a maternal effect gene required for early embryonic development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVWhs7c%3D&md5=e0a408e4f74168116752080a6463ae90CAS | 11062459PubMed |

Torres-Padilla, M. E., and Zernicka-Goetz, M. (2006). Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote. J. Cell Biol. 174, 329–338.
Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvF2htro%3D&md5=eda8c7cc2ddf1e5dfa1e32591d0ae68dCAS | 16880268PubMed |

Tripurani, S. K., Lee, K. B., Wang, L., Wee, G., Smith, G. W., Lee, Y. S., Latham, K. E., and Yao, J. (2011). A novel functional role for the oocyte-specific transcription factor newborn ovary homeobox (NOBOX) during early embryonic development in cattle. Endocrinology 152, 1013–1023.
A novel functional role for the oocyte-specific transcription factor newborn ovary homeobox (NOBOX) during early embryonic development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVGrsb0%3D&md5=c71264334e754cd715c2266d95c1b8c6CAS | 21193554PubMed |

Tsukamoto, S., Kuma, A., and Mizushima, N. (2008). The role of autophagy during the oocyte-to-embryo transition. Autophagy 4, 1076–1078.
The role of autophagy during the oocyte-to-embryo transition.Crossref | GoogleScholarGoogle Scholar | 18849666PubMed |

Uzumcu, M., and Zachow, R. (2007). Developmental exposure to environmental endocrine disruptors: consequences within the ovary and on female reproductive function. Reprod. Toxicol. 23, 337–352.
Developmental exposure to environmental endocrine disruptors: consequences within the ovary and on female reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFegtLc%3D&md5=9cf120ba117cd217cd62dad5b3bb2fe8CAS | 17140764PubMed |

Van Blerkom, J., Davis, P. W., and Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–424.
| 1:STN:280:DyaK2M3os1OrtQ%3D%3D&md5=f1cafb1b1db144259abaa53545c16e55CAS | 7769073PubMed |

VandeVoort, C. A., Mtango, N. R., Lee, Y. S., Smith, G. W., and Latham, K. E. (2009). Differential effects of follistatin on nonhuman primate oocyte maturation and pre-implantation embryo development in vitro. Biol. Reprod. 81, 1139–1146.
Differential effects of follistatin on nonhuman primate oocyte maturation and pre-implantation embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7jK&md5=0fa35fc8158743dab5ffe3dd6da79513CAS | 19641179PubMed |

Vogt, E. J., Meglicki, M., Hartung, K. I., Borsuk, E., and Behr, R. (2012). Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development. Development 139, 4514–4523.
Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ohtrg%3D&md5=eb6e734cbcf3ef77968e36ea30bb5f1aCAS | 23172912PubMed |

Wakefield, S. L., Lane, M., Schulz, S. J., Hebart, M. L., Thompson, J. G., and Mitchell, M. (2008). Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am. J. Physiol. Endocrinol. Metab. 294, E425–E434.
Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1ykur0%3D&md5=7c913b6548daade2b74f8419144253abCAS | 18073322PubMed |

Wallace, D. C. (2001). A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found. Symp. 235, 247–266.
A mitochondrial paradigm for degenerative diseases and ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Oksbs%3D&md5=758fc6a6558f584aed33fb8799600e19CAS | 11280029PubMed |

Wan, L. B., Pan, H., Hannenhalli, S., Cheng, Y., Ma, J., Fedoriw, A., Lobanenkov, V., Latham, K. E., Schultz, R. M., and Bartolomei, M. S. (2008). Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135, 2729–2738.
Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKgsbvN&md5=bacdd27006f50837403fe251b21b3622CAS | 18614575PubMed |

Wang, Q., and Moley, K. H. (2010). Maternal diabetes and oocyte quality. Mitochondrion 10, 403–410.
Maternal diabetes and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 20226883PubMed |

Wang, Q., Ratchford, A. M., Chi, M. M., Schoeller, E., Frolova, A., Schedl, T., and Moley, K. H. (2009). Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol. Endocrinol. 23, 1603–1612.
Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSitb%2FF&md5=eb3bd9dee0aa4311068dfb5d8f522741CAS | 19574447PubMed |

Wen, D., Banaszynski, L. A., Liu, Y., Geng, F., Noh, K. M., Xiang, J., Elemento, O., Rosenwaks, Z., Allis, C. D., and Rafii, S. (2014). Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc. Natl Acad. Sci. USA 111, 7325–7330.
Histone variant H3.3 is an essential maternal factor for oocyte reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVWrtb8%3D&md5=882f9e71b543318944788b08f2994853CAS | 24799717PubMed |

Wigglesworth, K., Lee, K. B., O’Brien, M. J., Peng, J., Matzuk, M. M., and Eppig, J. J. (2013). Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc. Natl Acad. Sci. USA 110, E3723–E3729.
Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WlurfE&md5=04081d6ca3a4bbd58007fb438ce40ee6CAS | 23980176PubMed |

Wilcox, A. J., Weinberg, C. R., O’Connor, J. F., Baird, D. D., Schlatterer, J. P., Canfield, R. E., Armstrong, E. G., and Nisula, B. C. (1988). Incidence of early loss of pregnancy. N. Engl. J. Med. 319, 189–194.
Incidence of early loss of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3ns1Snsw%3D%3D&md5=e2d3a17cf6b38ea8d70ca3cc4f751901CAS | 3393170PubMed |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C.J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, .
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1KksL4%3D&md5=585d882753c12050a1c8cd34c7fba92aCAS | 21407207PubMed |

Wu, X., Viveiros, M. M., Eppig, J. J., Bai, Y., Fitzpatrick, S. L., and Matzuk, M. M. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33, 187–191.
Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFSktg%3D%3D&md5=c64e596781a4c738af6628d3c2644a77CAS | 12539046PubMed |

Wu, L. L., Russell, D. L., Norman, R. J., and Robker, R. L. (2012). Endoplasmic reticulum (ER) stress in cumulus–oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (DeltaPsi m), and embryo development. Mol. Endocrinol. 26, 562–573.
Endoplasmic reticulum (ER) stress in cumulus–oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (DeltaPsi m), and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1ensrs%3D&md5=6b717d7aea88f13eb2febbd3718bd7c1CAS | 22383462PubMed |

Wyman, A., Pinto, A. B., Sheridan, R., and Moley, K. H. (2008). One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology 149, 466–469.
One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqsLc%3D&md5=37be794dcb93716892545e6ec3867ec8CAS | 18039778PubMed |

Yan, C., Wang, P., DeMayo, J., DeMayo, F. J., Elvin, J. A., Carino, C., Prasad, S. V., Skinner, S. S., Dunbar, B. S., Dube, J. L., Celeste, A. J., and Matzuk, M. M. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFKjs7o%3D&md5=79174391908d5b54202aa63d2bf763dfCAS | 11376106PubMed |

Yang, Z., Liu, J., Collins, G. S., Salem, S. A., Liu, X., Lyle, S. S., Peck, A. C., Sills, E. S., and Salem, R. D. (2012). Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol. Cytogenet. 5, 24.
Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study.Crossref | GoogleScholarGoogle Scholar | 22551456PubMed |

Yao, J., Ren, X., Ireland, J. J., Coussens, P. M., Smith, T. P., and Smith, G. W. (2004). Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis. Physiol. Genomics 19, 84–92.
Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslShtro%3D&md5=e8e72cd4da3923071a043731428b9d4aCAS | 15375196PubMed |

Yu, X. J., Yi, Z., Gao, Z., Qin, D., Zhai, Y., Chen, X., Ou-Yang, Y., Wang, Z. B., Zheng, P., Zhu, M. S., Wang, H., Sun, Q. Y., Dean, J., and Li, L. (2014). The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat. Commun. 5, 4887.
The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics.Crossref | GoogleScholarGoogle Scholar | 25208553PubMed |

Yurttas, P., Vitale, A. M., Fitzhenry, R. J., Cohen-Gould, L., Wu, W., Gossen, J. A., and Coonrod, S. A. (2008). Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135, 2627–2636.
Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGqt7vI&md5=3a878bc905a3fb3085e8b81944e3738eCAS | 18599511PubMed |

Zachut, M., Dekel, I., Lehrer, H., Arieli, A., Arav, A., Livshitz, L., Yakoby, S., and Moallem, U. (2010). Effects of dietary fats differing in n-6 : n-3 ratio fed to high-yielding dairy cows on fatty acid composition of ovarian compartments, follicular status, and oocyte quality. J. Dairy Sci. 93, 529–545.
Effects of dietary fats differing in n-6 : n-3 ratio fed to high-yielding dairy cows on fatty acid composition of ovarian compartments, follicular status, and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cjt7k%3D&md5=a80c64ce0e99c6242717da8fed3826edCAS | 20105525PubMed |

Zeng, F., Baldwin, D. A., and Schultz, R. M. (2004). Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496.
Transcript profiling during preimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1CjtrY%3D&md5=84ead26f83b2ea247ef80f5ca38e545eCAS | 15282163PubMed |

Zhang, K., Hansen, P. J., and Ealy, A. D. (2010). Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction 140, 815–826.
Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKqtLY%3D&md5=ac6a7972f9f74d5715400062644e5193CAS | 20876224PubMed |

Zhang, L., Lu, D. Y., Ma, W. Y., and Li, Y. (2011). Age-related changes in the localization of DNA methyltransferases during meiotic maturation in mouse oocytes. Fertil. Steril. 95, 1531–1534.
Age-related changes in the localization of DNA methyltransferases during meiotic maturation in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Cktb8%3D&md5=415c7e5c59879ce23bacc99a8e78f464CAS | 20674893PubMed |

Zheng, P., and Dean, J. (2009). Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc. Natl Acad. Sci. USA 106, 7473–7478.
Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Khtrc%3D&md5=31930edd1c05b97f1df656fca12639e6CAS | 19376971PubMed |

Zheng, P., Vassena, R., and Latham, K. E. (2007). Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos. Mol. Hum. Reprod. 13, 361–371.
Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFCqu7s%3D&md5=bf578cc17c9856ca58997ecf6eeb561aCAS | 17416905PubMed |

Zheng, W., Gorre, N., Shen, Y., Noda, T., Ogawa, W., Lundin, E., and Liu, K. (2010). Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis. EMBO Rep. 11, 890–895.
Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GrtbnN&md5=1656e6eb1e06c4b7ed727386a5309c75CAS | 20930845PubMed |