Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

032. Cdh1: A CELL CYCLE PROTEIN INVOLVED IN FEMALE MEIOSIS AND PREVENTION OF ANEUPLOIDY

K. T. Jones
+ Author Affiliations
- Author Affiliations

School of Biomedical Sciences, University of Newcastle, Callaghan, NSW, Australia.

Reproduction, Fertility and Development 22(9) 10-10 https://doi.org/10.1071/SRB10Abs032
Published: 6 September 2010

Abstract

Mammalian oocytes are arrested at the dictyate stage of prophase I in the ovary. In growing follicles, oocytes can become responsive to Luteinising Hormone and will undergo meiotic resumption just before ovulation. During the first meiotic division, homologous chromosomes are segregated, a process that is very error prone in human oocytes. By ovulation the oocyte has extruded its first polar body and has re-arrested at metaphase of the first meiotic division. Recent work from our lab has established that the protein Cdh1 is involved uniquely in both in the process of prophase I arrest and the correct segregation of homologs in meiosis I. Thus in cultured oocytes, in vitro antisense knockdown of Cdh1 induces both meiotic resumption and high rates of aneuploidy as a result of non-disjunction during first meiosis. Cdh1 causes prophase I arrest by inducing cyclin B1 degradation and maintaining low levels of the kinase CDK1, whose activity induces meiotic resumption. Cdh1 is an activator of the Anaphase-Promoting Complex (APC), a ubiquitin ligase that earmarks proteins such as cyclin B1 for proteolysis. Cdh1 prevents aneuploidy by causing the degradation of Cdc20, a protein that is responsible for activating the APC once all homologs are correctly aligned at metaphase. Thus loss of Cdh1 seems to prematurely activate APC(Cdc20) activity. It is interesting that a single protein can affect two important meiotic transitions in oocytes. However to explore its functions more fully, and confirm that an in vitro knockdown is faithfully replicated by in vivo loss, a targeted knockout of Cdh1 is needed. Therefore we have generated an oocyte specific Cdh1 knockout by ZP3 promoter driven Cre- recombinase activity in oocytes carrying loxP insertions in the single copy Cdh1 gene. This talk will therefore focus on the effects of an in vivo Cdh1 knockout.