Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

18 EMBRYO AGGREGATION IN PIG IMPROVES CLONING EFFICIENCY AND EMBRYO QUALITY

C. Buemo A , A. Gambini A , L. Moro A , R. F. Y. Martin A and D. Salamone A
+ Author Affiliations
- Author Affiliations

Animal Biotechnology Laboratory, University of Buenos Aires, Capital Federal, Argentina

Reproduction, Fertility and Development 28(2) 139-139 https://doi.org/10.1071/RDv28n2Ab18
Published: 3 December 2015

Abstract

In this study, we analysed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst size and cell number, DNA fragmentation levels by TUNEL assay, and the relative expression of genes associated with pluripotency, apoptosis, trophoblast markers, and DNA methylation in the porcine. Cumulus-oocyte complexes were recovered from slaughterhouse ovaries by follicular aspiration. Maturation was performed in TCM for 42 to 48 h at 39°C and 5% CO2. After denudation by treatment with hyaluronidase, mature oocytes were stripped of the zona pellucida using a protease and then enucleated by micromanipulation; staining was performed with Hoëchst 33342 to observe metaphase II. Ooplasms were placed in phytohemagglutinin to permit different membranes to adhere between each other; the ooplasm membrane was adhered to a porcine fetal fibroblast from an in vitro culture. Adhered membranes of the donor cell nucleus and enucleated oocyte cytoplasm were electrofused through the use of an electric pulse (80 V for 30 μs). All reconstituted embryos were electrically activated using an electroporator in activation medium (0.3 M mannitol, 1.0 mM CaCl2, 0.1 mM MgCl2, and 0.01% polyvinyl alcohol) by a DC pulse of 1.2 kVcm for 80 μs. Then, embryos were incubated in 2 mM 6-DMAP for 3 h. In vitro culture of zona-free embryos was achieved in a well of wells system in 100 μL of SOF medium. Two experimental groups were used, one control group with a single reconstructed embryo per microwell (1×) and the other group placing 3 reconstructed embryo per microwell (3x aggregation group). Embryos were cultivated at 39°C in 5% O2, 5% CO2 for 7 days in SOF medium with a supplement of 10% fetal bovine serum on the fifth day. At Day 7, resulting blastocysts were classified according to their morphology and diameter to determine their quality. Our results showed that aggregation of 3× embryos increased blastocyst formation rate and blastocyst size of pig cloned embryos (Fisher’s test P < 0.05 and Student’s t-test P < 0.05, respectively). The DNA fragmentation levels in 3× aggregated cloned blastocysts were significantly decreased compared to 1x blastocyst (Student’s t-test P < 0.05). Levels of Oct4, Klf4, Igf2, Bax, and Dnmt1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially nondetectable (Student’s t-test P < 0.05). Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.