Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

6 EQUINE SPERM INDUCES PRONUCLEAR FORMATION BY INTRACYTOPLASMIC SPERM INJECTION IN BOVINE, SWINE, AND FELINE OOCYTES INDEPENDENTLY OF CHEMICAL ACTIVATION ASSISTANCE

M. B. Rodríguez A , A. Gambini A B , R. J. Bevacqua A B and D. F. Salamone A B
+ Author Affiliations
- Author Affiliations

A Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina;

B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Reproduction, Fertility and Development 27(1) 95-95 https://doi.org/10.1071/RDv27n1Ab6
Published: 4 December 2014

Abstract

Interspecific intracytoplasmic sperm injection (ICSI) is a valuable tool to study early events of fertilization in species for which oocyte availability is reduced. Equine in vitro fertilization remains unsuccessful and ICSI is the technique of choice for the in vitro production of high-value embryos. Therefore, the objective of this study was to evaluate the rate of pronuclear (PN) formation after ICSI with stallion sperm in bovine, swine and feline oocytes with or without chemical activation assistance. Ovaries from cows and pigs were collected at abattoirs whereas gonads from female domestic cats were obtained from ovariectomized animals at veterinary sterilization centers. Cumulus-oocyte complexes were matured in TCM-199 supplemented following standard protocols for each species. ICSI was performed in 100-μL drops of TALP-HEPES, using frozen-thawed semen from one stallion. Spermatozoa were held separate in 3-μL droplets of 7% (vol/vol) polyvinylpyrrolidone, where one of them was immobilized by swiping the injection pipette across its tail, and then injected into the matured oocyte. After ICSI, some oocytes were chemically activated with 5 μM ionomycin for 4 min (cow and cat) or with an electric pulse (sow) followed by 3 h in culture medium to allow extrusion of the second polar body and then exposure to 1.9 mM 6-DMAP solution for 3 h. Embryos were cultured in SOF medium. After 17 h of culture, embryos were stained with propidium iodide to identify the percentage of oocytes activated and with PN. Haploid and diploid parthenogenetic controls were included. Cleavage (48 h after activation) and blastocyst formation (7–8 days) of the partenogenetic control groups were assessed. There were no statistical differences (chi-squared analysis) in PN formation between the activated and nonactivated groups within species. When the activated group was compared between the different species, no differences were observed. However, for the nonactivated group, significant differences were observed between species. The feline oocyte showed the higher percentage of PN and activation, whereas the bovine oocyte exhibited the lower rate of PN formation (cat: 22/27, 81.48%; swine: 19/39, 71.64%; cow:18/63, 43.07%). Our results suggest that the feline oocyte can be used as model to study fertilization events associated with the stallion sperm due to the higher efficiency in supporting PN formation. Our results indicate that the equine sperm is capable of inducing PN formation in these 3 species without further chemical activation assistance.