188 DEVELOPMENT OF AN EFFECTIVE WHOLE-OVARY PERFUSION SYSTEM
S. Maffei A , G. Galeati B , G. Pennarossa C , T. A. L. Brevini C and G. Gandolfi CA Institute for Genetic and Biomedical Research, National Council of Research, Milan, Italy;
B Department of Veterinary Medical Science, Università di Bologna, Bologna, Italy;
C Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
Reproduction, Fertility and Development 27(1) 185-185 https://doi.org/10.1071/RDv27n1Ab188
Published: 4 December 2014
Abstract
The different structures of a mammalian ovary require complex 3-dimensional interactions to function properly. It is difficult to access the ovary in vivo and to study its physiology in vitro, it is necessary to dissect its different parts and culture them individually. Although informative, this approach prevents the understanding of the role played by their interactions. Perfusion systems are available for ovaries of laboratory animals while organs of larger species have been maintained in culture only for a few hours. This has prompted us to develop a system that can preserve the function of a whole sheep ovary for a few days ex vivo so that it is available for analysis in controlled conditions. Twenty-four sheep ovaries were collected at the local abattoir; 18 were assigned randomly to 3 experimental groups (media A, B, and C) and 6 were immediately fixed in 10% formaldehyde and used as fresh controls. Whole ovaries were cultured for up to 4 days using a semi-open perfusion system. Organs were perfused through the ovarian artery, at a flow rate of 1.5 mL min–1 with basal medium (M199, 25 mM HEPES, 2 mM l-glutamine and 100 µg mL–1 antibiotic-antimycotic solution) supplemented with 0.4% fatty acid free BSA (medium A); or 0.4% BSA heat shock fraction (medium B); or 10% FBS, 50 ng mL–1 IGF-1, and 50 mg bovine insulin (medium C). Ovaries were stimulated with FSH (Folltropin®-V, Bioniche Animal Health Inc., Belleville, Ontario, Canada) changing medium in a pulsatile manner (1 mg mL–1 for 2 h; 0.5 mg mL–1 for 2 h; 0 mg mL–1 for 20 h), with the same cycle repeated each day of culture. At every change, aliquots were collected for oestradiol (E2) and progesterone (P4) quantification. After culture, ovaries were examined for follicular morphology, cell proliferation, and apoptotic rate. Statistical analysis was performed using one-way ANOVA (SPSS 20, IBM, Armonk, NY, USA). In media A and B, all morphological parameters showed a small but significant decrease compared to fresh control, only after 3 days of culture. The different BSA in medium B did not affect follicle morphology but significantly increased cell proliferation (medium A, 28.59 ± 3.26%; medium B, 32.04 ± 2.67%) and decreased apoptosis (medium A, 32.51 ± 5.92%; medium B, 24.55 ± 2.55%). In both media, steroid concentration increased after FSH pulses (E2 range 1.95–10.50 pg mL–1; P4 range 0.34–3.08 ng mL–1), reaching levels similar to those measurable in peripheral plasma. The presence of FBS, IGF-1, and insulin in medium C allowed extension of the culture period to 4 days with a percentage of intact follicles comparable to that observed after 3 days in media A and B. Moreover, proliferation rates were comparable to fresh controls. Steroid pattern changed with P4 values dropping close to zero (range 0.03–1.18 ng mL–1) and E2 level (range 23.59–94.98 pg mL–1) increasing 10-fold, achieving a concentration similar to that measured in the ovarian vein around oestrous. Our data indicate that it is possible to support viability of large animal whole ovaries for up to 4 days, providing a physiologically relevant model for studying ovarian functions in vitro.
Research was supported by AIRC IG 10376 and by the Carraresi Foundation.