22 OXAMFLATIN TREATMENT ENHANCES NUCLEAR REPROGRAMMING BY INHIBITING XIST EXPRESSION AND REDUCING DNA METHYLATION IN PORCINE SOMATIC CELL NUCLEAR TRANSFER EMBRYOS
J. Mao A B , M. T. Zhao B , K. M. Whitworth B , L. D. Spate B , K. Lee B , E. M. Walters A B and R. S. Prather A BA National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA;
B Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
Reproduction, Fertility and Development 26(1) 125-125 https://doi.org/10.1071/RDv26n1Ab22
Published: 5 December 2013
Abstract
Treatment of cloned embryos with histone deacetylase inhibitors (HDACi) enhances developmental potential by alteration of epigenetic status. Oxamflatin is one of the potent HDACi. In our previous study, development to Day 7 blastocysts was enhanced when the porcine somatic cell nuclear transfer (SCNT) embryos were treated with oxamflatin for 16 h. The objective of the present study was to investigate the effect of oxamflatin treatment on XIST gene expression and DNA methylation of XIST gene and centromeric repeat element in Day 7 SCNT blastocysts. Somatic cell nuclear transfer was performed on enucleated metaphase II oocytes using a transgene female cell line. Cloned embryos were electrically fused and activated, treated with 150 nM oxamflatin for 16 h and cultured in PZM3 under 5% CO2, 5% oxygen, and 90% N2 for 7 days. Clones without Oxamflatin treatment were used as controls. For XIST methylation, IVF blastocysts at Day 7 were used as controls. Blastocysts at Day 7 were pooled from each treatment group and processed for methylation analysis by bisulfite sequencing and gene expression by quantitative real-time PCR. This experiment was replicated 4 times. The percent of CpG methylation in donor cells before SCNT was also determined. Data were analysed by using SAS version 9.3 (SAS Institute Inc., Cary, NC, USA). In donor cells, 45.3 ± 5.8% of CpGs in a centromeric repeat element (9 CpGs in GenBank Z75640) were methylated. In the SCNT embryos, oxamflatin treatment reduced methylation from 27.3 ± 3.1% in the control to 18.2 ± 3.2% (P < 0.05). The average methylation in XIST (11 CpGs in GenBank KC149530.1) in donor cells was 42.4 ± 6.4%. This CpG island had 2 sites that were not methylated in any of the samples. However, the remaining 9 CpGs were methylated in 8 of 15 samples; for example, showing a parental imprint of ~50%. This implied that the CpG island studied represented the real-time status of the XIST locus in the cell and provides a good marker for reprogramming studies. XIST methylation level in Day 7 blastocysts was not different between oxamflatin (11.8 ± 3.2%) and control (11.8 ± 3.2%). However, XIST methylation in SCNT embryos was higher than in the same age IVF blastocysts (11.7 ± 1.7 v. 0.6 ± 2.4%; P < 0.01). Oxamflatin treatment tended to decrease XIST expression in Day 7 blastocysts compared with controls (18.8 ± 0.8 v. 21.7 ± 0.8; P < 0.1) as measured by real-time PCR. Interestingly, XIST gene expression was positively correlated with its methylation (P < 0.05). In conclusion, these results indicate that during nuclear reprogramming there was a dramatic decrease in DNA methylation from donor cells to Day 7 SCNT embryos. The higher methylation of XIST in SCNT embryos compared with IVF embryos suggests that the reprogramming of donor cells was not completed, which may be a contributor to low cloning efficiency. Oxamflatin treatment of SCNT embryos may enhance nuclear reprogramming by inhibiting XIST expression and reducing DNA methylation, resulting in better embryo development.