Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

79 DEVELOPMENTAL COMPETENCE OF OVINE OOCYTES VITRIFIED AT GERMINAL VESICLE STAGE: IN VITRO FERTILIZATION, PARTHENOGENETIC ACTIVATION, AND SOMATIC CELL NUCLEAR TRANSFER

A. R. Moawad A , I. Choi A , J. Zhu A and K. H. S. Campbell A
+ Author Affiliations
- Author Affiliations

University of Nottingham, Loughborough, UK

Reproduction, Fertility and Development 23(1) 145-145 https://doi.org/10.1071/RDv23n1Ab79
Published: 7 December 2010

Abstract

Oocyte cryopreservation represents an important development in the field of assisted reproductive technologies. This study investigated the effects of vitrification on spindle morphology following subsequent in vitro maturation (IVM), cleavage, and development following IVF and parthenogenetic activation. The developmental competence of ovine oocytes vitrified at the germinal vesicle (GV) stage, matured, and used as cytoplast recipients for somatic cell nuclear transfer (SCNT) was also determined. Cumulus–oocyte complexes obtained at slaughter were divided into 3 groups: 1) untreated (control), 2) toxicity (exposed to vitrification solutions without freezing), and 3) vitrified (2008 Reprod. Fertil. Dev. 20, 122). At 24 hpm (hours post onset of maturation), oocytes were subjected to 1) immunostaining, 2) IVF, or 3) activation by 2 different protocols [calcium ionophore, cycloheximide, and cytochalasin B (CA+CHX/CB), or strontium and CB (Sr/CB)]. The SCNT was performed as previously described (2010 Reprod. Fertil. Dev. 22, 1000–1014). Presumptive zygotes were cultured in vitro for 7 days. No significant differences (P > 0.05; chi-square) were observed in the frequencies of oocytes with normal spindle configuration between vitrified, toxicity, and control groups (50.0, 54.9, and 70.4%, respectively). Cleavage 24, 48 hpi, and morula development (5 days pi) were significantly decreased (P < 0.01) in the vitrified group (17.3, 42.9, and 36.4%) compared with toxicity (47.0, 85.3, and 60.7%) and control (68.9, 89.7, and 62.6%) groups. Blastocyst development significantly decreased (P < 0.01) in the vitrified group (12.3%) compared with toxicity (42.7%) and control (40.4%) groups. Based on cleaved embryos, no significant difference was observed between vitrified and control groups (29.4 v. 45.1%). Post-activation, cleavage 24 hpa (hours post-activation, 6.2 v. 3.8%) and 48 hpa (28.4 v. 27.5%) was significantly lower (P < 0.05) in vitrified oocytes activated by (CA+CHX/CB and Sr/CB) than other groups. No blastocyst developed from vitrified oocytes activated by CA+CHX/CB; however, 3.8% developed from Sr/CB oocytes. This was significantly (P < 0.05) lower than toxicity and control (20.0 and 27.3%) groups. Following SCNT, high frequencies of enucleation (99%) and fusion (98%) were achieved in vitrified and control groups. Cleavage 24 and 48 hpa significantly decreased (P < 0.05) in the vitrified group (31.0 and 48.0%) compared with the control (55.1 and 85.0%). No significant differences were observed in morula (38.0 v. 46.7%) and blastocyst (13.0 v. 23.4%) development. The proportion of cleaved embryos that developed to blastocyst stages was similar in both groups (27.0%). No significant differences (t-test) were observed in total cell numbers, apoptotic nuclei, and proportion of diploid embryos. In conclusion, ovine oocytes vitrified at GV stage can be matured, fertilized, and develop in vitro with high developmental potential. Strontium can be used effectively for activation of vitrified/thawed ovine oocytes. Vitrified/thawed ovine oocytes were used successfully for the first time as recipient cytoplasts for SCNT and produced high frequencies of good-quality blastocyst stage embryos.