119. IDENTIFICATION AND CHARACTERISATION OF SURFACE PROTEIN COMPLEXES IN HUMAN SPERMATOZOA
K. A. Redgrove A , B. Nixon A , E. A. McLaughlin A , M. K. O’Bryan B and R. J. Aitken AA Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
B Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
Reproduction, Fertility and Development 22(9) 37-37 https://doi.org/10.1071/SRB10Abs119
Published: 6 September 2010
Abstract
A unique characteristic of mammalian spermatozoa is that upon ejaculation, they are unable to recognise and bind to an ovulated oocyte. These functional attributes are only realised following the sperms ascent of the female reproductive tract whereupon they undergo a myriad of biochemical and biophysical changes collectively referred to as ‘capacitation’. Since spermatozoa are both transcriptionally and translationally quiescent cells, this functional transformation must be engineered by a combination of post-translational modification and spatial reorganisation of existing sperm proteins. Indeed, evidence from our laboratory suggests that a key attribute of capacitation is the remodeling of the sperm surface architecture leading to the assembly and / or presentation of multimeric sperm-oocyte receptor complex(es). Through the novel application of Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE), we have secured the first direct evidence that human spermatozoa express a number of these protein complexes on their surface. Furthermore, we have demonstrated that a subset of these complexes harbour putative zona adhesion proteins and display strong affinity for solubilised zona pellucidae. In this study, we have extended our findings through the characterisation of one such complex containing arylsulfatase A (ASA), a protein with recognised affinity for sulfated ligands present within the zona pellucida. Through the application of immunohistochemistry and flow cytometry we revealed that ASA undergoes a capacitation-associated translocation to become expressed on the apical region of the human sperm head, a location compatible with a role in the mediation of sperm-zona pellucida interactions. This dramatic relocation was completely abolished by incubation of capacitating spermatozoa in exogenous cholesterol, suggesting that it may be driven in part by alteration in the membrane fluidity characteristics. Our current research is focused on confirming the role of ASA in human sperm-zona pellucida adhesion and elucidating the precise cellular mechanisms that underpin the proteins translocation to the cell surface.