Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

236. Effects of long term recombinant rat follicle-stimulating hormone replacement on the restoration of spermatogenesis after chronic suppression of gonadotrophins in adult rats

S. M. Ruwanpura A , P. G. Stanton A , D. M. Robertson A , R. I. McLachlan A , Y. Makanji A and S. J. Meachem A
+ Author Affiliations
- Author Affiliations

Prince Henry's Institute, Clayton, Vic., Australia.

Reproduction, Fertility and Development 20(9) 36-36 https://doi.org/10.1071/SRB08Abs236
Published: 28 August 2008

Abstract

Follicle stimulating hormone (FSH) in short-term rat studies supports spermatogenesis at multiple levels, notably spermatogonial development. The role of FSH in supporting full spermatogenesis in rats is still in question as long-term studies have not been possible due the development of neutralising antibodies to heterologous FSH preparations. This study sought to assess the effects of a homologous recombinant rat FSH (rr-FSH) preparation on the long-term restoration of spermatogenesis. Adult rats were GnRH-immunised (GnRH-im) for 12 weeks then, administered an anti-androgen; flutamide (flut), alone or together with rr-FSH (8µg/rat/daily) for 56 days (1 spermatogenic cycle). Germ and Sertoli cell numbers were quantified using an optical disector stereological method. Testis weight, serum FSH and inhibin B and Sertoli cell nuclear volume were significantly reduced to 15%, 13%, 25% and 57% of controls respectively, following GnRH-im+flut treatment. GnRH-im+flut treatment reduced A/I spermatogonial, type B spermatogonial+preleptotene, leptotene+zygotene and early pachytene spermatocyte numbers to 28%, 68%, 50% and 19% (P < 0.001) of controls respectively, with later germ cells rarely observed. After FSH treatment, no significant affect on testis weight, serum FSH and inhibin B or Sertoli cell number were observed. However, rr-FSH treatment significantly increased numbers of A/I spermatogonia, leptotene+zygotene and early pachytene spermatocytes from 28 = >42%, 50 = >69% and 19 = >27% of controls, respectively, while no differences were observed in later germ cell types. rr-FSH also increased (P < 0.05) the volume of Sertoli cell nuclei from 57 = >66% of control. In conclusion, FSH is unable to support full rat spermatogenesis; however, FSH can partially support germ cells notably spermatogonia through to early pachytene spermatocytes, despite the absence of androgenic support.