8 COMBINATION OF OESTRUS DETECTION AND FIXED-TIME ARTIFICIAL INSEMINATION IN BEEF HEIFERS FOLLOWING A SHORTENED OESTRADIOL-BASED PROTOCOL THAT PROVIDES FOR A LENGTHENED PROESTRUS
J. J. de la Mata A , M. Ré A and G. A. Bó A BA Instituto de Reproduccion Animal Cordoba (IRAC), Cordoba, Argentina;
B Instituto A.P. de Ciencias Basicas y Aplicadas, Universidad Nacional de Villa Maria, Cordoba, Argentina
Reproduction, Fertility and Development 27(1) 96-97 https://doi.org/10.1071/RDv27n1Ab8
Published: 4 December 2014
Abstract
Studies have shown that gonadotropin-releasing hormone-based protocols that reduce the period of progestin insertion and prolong the period from progestin removal to gonadotropin-releasing hormone and fixed-time AI (FTAI; named 5-day Co-Synch) results in similar or higher pregnancy rates than the conventional 7-day Co-Synch protocol in beef cows and heifers (Bridges et al. 2008 Theriogenology 69, 843–851). Similar findings have been reported following the use of an oestradiol-based protocol that also provides for a longer period of proestrus (named J-Synch; de la Mata and Bó 2012 Taurus 55, 17–23). An experiment was designed to compare the J-Synch protocol for synchronization of ovulation that allows for a prolonged proestrus with a conventional 7-day oestradiol-based protocol for FTAI in heifers. Cycling 18-month old Angus and Hereford heifers (n = 208) with a body condition score of 6 to 7 (scale of 1 to 9) were randomly allocated to 1 of 2 treatment groups. Heifers in the 7-day EB group (n = 105) received a progesterone (P4) device (DIB 0.5 g of P4, Syntex SA, Buenos Aires, Argentina) and 2 mg of oestradiol benzoate (EB, Syntex SA) on Day 0 and 500 μg of cloprostenol (PGF; Ciclase DL, Syntex SA) and 0.5 mg oestradiol cypionate (Cipiosyn, Syntex SA) on the day of DIB removal (Day 7). Heifers were also tail painted at the time of DIB removal and observed for signs of oestrus (i.e. tail paint rubbed off). Those with the tail paint rubbed off by 36 h after DIB removal were inseminated 12 h later, whereas those not showing oestrus by 36 h were FTAI at 54 h. Heifers in the J-Synch group (n = 103) received DIB and 2 mg of EB on Day 0 and PGF on the day of DIB removal (Day 6). Heifers in this group were also tail painted at DIB removal, and those with their tail paint rubbed off by 48 h were inseminated 12 h later; those not showing oestrus by 60 h received 100 μg of gonadorelin acetate (gonadotropin-releasing hormone, Gonasyn gdr, Syntex SA) and were FTAI at 72 h after DIB removal. Pregnancy was diagnosed by ultrasonography at 55 days after FTAI (Honda 101V, 5.0-MHz transducer). Data were analysed by logistic regression. Oestrus detection rate and pregnancy rate to FTAI did not differ (P > 0.1) between groups (38.8%, 40/103 and 60.3%, 38/ 63 for heifers in the J-Synch group v. 28.5%, 30/105 and 45.3%, 34/75 for those in the 7-day EB group). However, pregnancy rates to observed oestrus tended (P < 0.09) to be higher and the overall pregnancy rate was significantly higher (P < 0.01) in heifers in the J-Synch group (80.0%, 32/40 and 67.9%, 70 /103) compared with those in 7-day EB group (50%, 15/30 and 46.6%, 49/105). Furthermore, heifers within the J-Synch group that had their tail paint rubbed off by 48 h after DIB removal and were AI 12 h later (i.e. 60 h) had higher (P < 0.05) pregnancy rate than those in the same group that were FTAI. In conclusion, reducing the time of progestin device insertion and lengthening the proestrus period, as in the J-Synch protocol, results in higher pregnancy rates than with the conventional oestradiol-based protocol. Furthermore, the combination of oestrus detection and FTAI would appear to improve the pregnancy outcome even more.